11-cage de Balaban

graphe régulier

La 11-cage de Balaban (ou (3-11)-cage de Balaban) est, en théorie des graphes, un graphe régulier possédant 112 sommets et 168 arêtes.

11-cage de Balaban
Image illustrative de l’article 11-cage de Balaban
Représentation de la 11-cage de Balaban

Nombre de sommets 112
Nombre d'arêtes 168
Rayon 6
Diamètre 8
Maille 11
Automorphismes 64
Nombre chromatique 3
Indice chromatique 3
Propriétés Cubique
Cage
Hamiltonien

Il porte le nom du mathématicien A. T. Balaban qui en a publié la description en 1973[1].

Propriétés

modifier

Propriétés générales

modifier

La 11-cage de Balaban est une (3,11)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 11 et étant régulier de degrés 3. C'est en fait l'unique (3-11)-cage. Cette unicité a été prouvée par McKay et Myrvold en 2003[2].

Le diamètre de la 11-cage de Balaban, l'excentricité maximale de ses sommets, est 8, et son rayon, l'excentricité minimale de ses sommets, est 6. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté, il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Coloration

modifier

Le nombre chromatique de la 11-cage de Balaban est 3. C'est-à-dire qu'il est possible de le colorer avec 3 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes mais ce nombre est minimal. Il n'existe pas de 2-coloration valide du graphe.

L'indice chromatique de la 11-cage de Balaban est 3. Il existe donc une 3-coloration des arêtes du graphe telles que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

modifier

Le groupe d'automorphismes de la 11-cage de Balaban est un groupe d'ordre 64[3].

Le polynôme caractéristique de la 11-cage de Balaban est : .

Représentations

modifier

Voir aussi

modifier

Liens internes

modifier

Liens externes

modifier

Références

modifier
  1. (en) A. T. Balaban, Trivalent Graphs of Girth Nine and Eleven and Relationships Among the Cages, Rev. Roumaine Math., 18, 1033-1043, 1973
  2. (en) « Cage Graph », MathWorld
  3. (en) Geoffrey Exoo & Robert Jajcay, Dynamic cage survey, Electr. J. Combin. 15 (2008)
  4. (en) P. Eades, J. Marks, P. Mutzel, S. North, Graph-Drawing Contest Report, Mitsubishi Electric Research Laboratories, TR98-16, 1998