Discussion:Aragonite

Dernier commentaire : il y a 17 ans par Greewi dans le sujet Indices de réfraction
Autres discussions [liste]
  • Admissibilité
  • Neutralité
  • Droit d'auteur
  • Article de qualité
  • Bon article
  • Lumière sur
  • À faire
  • Archives
  • Commons

Gemme, je me suis permis de révoquer ta dernière modif. Uniquement pour le motif. Explique moi en quoi Vargneau est un saboteur. Alvaro 7 décembre 2005 à 18:26 (CET)Répondre

Je connais pas de Vargneau. Toute une série d'articles catégorisés dans catégorie:carbonate (minéral) ont été abusivement changés de catégorie, ceci à 2 reprises, et cela me paraît suffisant pour parler de sabotage de l'organisation des articles, car la deuxième fois ne peut être « innocente ».
Les explications sont . Gemme 7 décembre 2005 à 19:05 (CET)Répondre

Facile, pourtant, Utilisateur:Vargenau : ici depuis avril 2003, tu es le premier à le traiter de saboteur. Modère tes propos, sinon je te bloque. Alvaro 7 décembre 2005 à 19:34 (CET)Répondre

Je n'ai pas traité ce quidam de « saboteur ». J'ai constaté un sabotage de l'organisation d'une série d'articles de minéraux, et c'est un fait irréfutable. Je te conseille de modérer tes propos, parce qu'après ta dernière réversion agressive sur l'article aragonite, qui fait partie de ton domaine d'incompétence, tu dépasses vraiment la mesure. Gemme 7 décembre 2005 à 19:44 (CET)Répondre
Hop, encore une agression. Pourquoi parles-tu de mon domaine d'incompétence ? Après tout, qui me prouve, au vu de tes multiples réversions, que tu es un spécialiste en boomerang, en cuiller à café, en astrophysique, en racisme.... ? Alvaro 8 décembre 2005 à 14:18 (CET)Répondre
C'est toi-même qui affirme ton incompétence au début de la discussion en indiquant que tu motives ta réversion par une question de forme de l'action précédente de modification, alors qu'une personne compétente évoquera la modification elle-même. Gemme 8 décembre 2005 à 14:44 (CET)Répondre
Je n'ai pas dit que j'étais incompétent. Bon, crois ce que tu veux. Je te confirme qu'à la prochaine agression d'un autre contributeur je te bloquerai. Alvaro 8 décembre 2005 à 15:18 (CET)Répondre
Et moi, je te confirme que ta fonction d'administrateur te t'accorde aucune prérogative particulière par rapport à tout autre intervenant, et que toute menace d'utilisation ou toute utilisation non justifée des possibilités techniques liées à cette fonction sont des abus manifestes et sanctionnables. Tu feras moins le malin quand tu auras à répondre de tes abus passés ou futurs. Gemme 8 décembre 2005 à 23:45 (CET)Répondre

Indices de réfraction

modifier

A quoi correspondent les différents indices de réfractions donnés dans le tableau de droite ? S'il s'agit des indices pour trois longueurs d'ondes différentes, à quelles longueurs d'ondes correspondent-ils ? --Greewi 28 février 2007 à 17:22 (CET)Répondre

Le comportement des ondes lumineuses dans un cristal est le résultat de l'interaction du vecteur électrique avec le caractère diélectrique du cristal, décrit par l’équation tensorielle D = ε E, où ε est le tenseur diélectrique, qui dépend des atomes et des liaisons composant le cristal. En absence de champ magnétique et d'absorption, le tenseur diélectrique est réel et symétrique: εij = εji. La matrice représentation de ε peut alors être portée en forme diagonale (tel que tous les éléments hors de la diagonale sont zéro) par une transformation du référentiel. Les axes de ce réferentiel sont dits axes principaux. ε peut alors être représenté un ellipsoïde, dont l’équation est :
x2112 + y2222 + z2332 = 1


ε11, ε22 et ε33 sont dites constantes diélectriques principales ou permittivités principaux. Cet ellipsoïde est appelé indicatrice optique et correspond à la figure obtenue on dessinant des vecteurs du centre du cristal en toutes les directions, la longueur de chaque vecteur étant proportionnelle à l'indice de réfraction pour la direction de vibration. L'indice de réfraction n le long d'une direction dans le matériau est la racine carrée de ε pour la direction en question.
Selon la forme de l'indicatrice optique, les cristaux sont classés en trois types:
1 cristaux isotropes (système cristallin cubique): ε11 = ε22 = ε33. L'indicatrice optique est une sphère. Toutes les sections centrales sont des cercles. Dans ces cristaux, la lumière monochromatique se propage avec la même vitesse quelle que soit sa direction de vibration, et l'indice de réfraction ne change pas avec la direction.
2 cristaux anisotropes: l'indicatrice optique est un ellipsoïde. Les sections centrales sont, en général, des ellipses. Mais parmi ces sections il y a une ou deux (selon le système cristallin) qui sont des cercles. La direction perpendiculaire à une section circulaire est dite axe optique. La vitesse de propagation et l'indice de réfraction dépendent de la direction de vibration. Le long de chaque direction deux ondes parallèles se propagent, en général avec une vitesse différente.
2.1 Cristaux anisotropes uniaxes (systèmes cristallins hexagonal, trigonal et tétragonal): ε11 = ε22 ≠ ε33; l'indicatrice optique est un ellipsoïde de révolution avec une section circulaire et un axe optique.
2.2 cristaux anisotropes biaxes (systèmes cristallins orthorhombique, monoclinique et triclinique): ε11 ≠ ε22 ≠ ε33; l'indicatrice optique est un ellipsoïde général avec deux sections circulaires et deux axes optiques.
L'aragonite est orthorhombique, donc anisotrope biaxe. Les trois indices de refractions correspondent aux trois valeurs différentes de ε11, ε22 et ε33 le long des axes principaux. Cela pour une longueur d'onde donnée. En lumière polychromatique, la situation devient plus complèxe. Mahlerite | 28 février 2007 à 17:47 (CET)Répondre
Merci, il faudrait peut être l'indiquer dans la page indice de réfraction. Je vais essayer de m'y coller. --Greewi 28 février 2007 à 17:56 (CET)Répondre
Revenir à la page « Aragonite ».