Discussion:Primorielle

Dernier commentaire : il y a 3 ans par Stefan jaouen dans le sujet Une formule
Autres discussions [liste]
  • Admissibilité
  • Neutralité
  • Droit d'auteur
  • Article de qualité
  • Bon article
  • Lumière sur
  • À faire
  • Archives
  • Commons

combien fait le primorielle de 1? combien fait le primorielle de 0?

 0: ?
 1: ?
 2: 2
 3: 6
 5: 30
 7: 210
11: 2310
13: 30030
17: 510510
19: 9699690
23: 223092870
29: 6469693230
31: 200560490130
37: 7420738134810
41: 304250263527210
43: 13082761331670030
47: 614889782588491410
53: 32589158477190044730
59: 1922760350154212639070
61: 117288381359406970983270
67: 7858321551080267055879090
71: 557940830126698960967415390
73: 40729680599249024150621323470
79: 3217644767340672907899084554130
83: 267064515689275851355624017992790
89: 23768741896345550770650537601358310
97: 2305567963945518424753102147331756070
La fonction n'est pas définie pour 0 et 1, la question ne se pose donc pas. En fait, on pourrait donner des valeurs arbitraires si c'était utile (genre P(1)=1) mais comme on utilise ces nombres pour les grandes valeurs, à ma connaissance, c'est pas très utile de se poser cette question. --Celui 15 février 2006 à 00:36 (CET)Répondre
La réponse précédente suffisait, mais comme tout produit vide, P(n)=1 si n est strictement inférieur à 2. Anne Bauval (d) 19 juillet 2010 à 02:07 (CEST)Répondre
Tout nombre premier avec n# est donc premier avec tout nombre de 2 à n. Quelle est la probabilité pour qu'un nombre premier avec 30030 (représentable sur 16 bits même en arithmétique signée) soit premier "tout court" ?? Peut-on espérer quelque application dans ce secteur ?

Lf69100 (d) 28 septembre 2010 à 16:06 (CEST)Répondre

"Primorielle" : ce mot désigne une fonction, un nombre ou les 2 ?

modifier

Il y a visiblement une confusion terminologique, visible dans l'article, entre dire que :

  • la fonction primorielle(7) = 210, et dire que :
  • 210 est un nombre primorielle. <-- what ?, il ne serait pas plutôt primorielle ce nombre ?

Bref, il faut forcément corriger les formulations. Maintenant si la fonction s'appelle bien primorielle, le nombre est-il bien désigné en français par primoriel (car j'invente ce mot par bon sens mais je n'en sais rien.) ? --Epsilon0 ε0 20 mars 2014 à 22:34 (CET)Répondre

Raréfaction des nombres premiers

modifier

Si s(n) est le plus petit nombre premier supérieur à n, une suite de s(n)-2 nombres composés successifs s'observe au moins de P(n)+2 à P(n)+s(n)-1, cer chacun de ces nombres est divisible par un des facteurs de P(n).

Ainsi, pas de nombre premier de P(13)+2 = 30030+2 = 30032 à 30030+17-1 = 30046, soit 15 nombres composés successifs (au moins). En effet, 17 est le plus petit nombre divisible ni par 2 ni par 3 ni par 5 ni par 7 ni par 11, qui "laisse une chance" à 30047 d'être premier.

--Lf69100 (discuter) 8 mars 2015 à 23:35 (CET)Répondre

Aucune source livresque en français ?

modifier

Je ne trouve rien. Anne 9/3/16

Par exemple :
‘Le Monde Est Mathématique, T18 : Nombres Remarquables - Le 0, Le 666 et Autres Étrangetés Numériques - Livre de Lamberto Garcia Del Cid’. https://booknode.com/le_monde_est_mathematique_t18_nombres_remarquables_-_le_0_le_666_et_autres_etrangetes_numeriques_01938353.--MClerc (discuter) 3/3/19
Anne; peut-être cette publication en cryptologie où les auteurs utilisent primoradic : https://books.google.fr/books?id=ipj8DwAAQBAJ&pg=PA29
(chapitre II, paragraphe 14).--Stefan jaouen (discuter) 23 avril 2021 à 09:36 (CEST)Répondre
Maurice, merci. Stefan, ton livre est en anglais. Anne 23/4/21, 10 h 22
Oups, Anne, j'avais lu trop vite (:)). --Stefan jaouen (discuter) 23 avril 2021 à 10:44 (CEST)Répondre

x/logx

modifier

Si on considère des blocs de 210, 2310, 30030, ... , x/logx s'écrit 210/(log(2)+log(3)+log(5)+log(7)),... etc.--Stefan jaouen (discuter) 23 avril 2021 à 09:40 (CEST)Répondre

on peut aussi étudier les entiers associés aux unités de Z/pnZ dans ces blocs. Il n'est pas sérieux d'étudier la répartition des nombres premiers tant qu'on n'a pas étudié celle des nombres qui ne sont ni multiples de 2, ni de 3, ni de 5 par exemple. Ces nombres ont une écriture adaptée à leur étude en numération primorielle. Dans The theory of numbers, au tout début, Hardy examine des blocs de 1000. Mais son livre n'est qu'une introduction à la théorie des nombres.--Stefan jaouen (discuter) 23 avril 2021 à 09:43 (CEST)Répondre

Une formule

modifier

1/2+1/6+2/30+8/210+....+phi(p_{n-1})/p_n#+...... tend vers 1 (phi, Indicatrice d'Euler) Avez-vous des informations sur cette série ?Cordialement, --Stefan jaouen (discuter) 25 avril 2021 à 13:44 (CEST)Répondre

Revenir à la page « Primorielle ».