La fonction signe, ou signum en latin, souvent représentée sgn dans les expressions, est une fonctionmathématique qui extrait le signe d'un nombre réel, c'est-à-dire que l'image d'un nombre par cette application est 1 si le nombre est strictement positif, 0 si le nombre est nul, et -1 si le nombre est strictement négatif :
Notation explicite avec les fonctions hyperboliques
On peut aussi la construire en résultat d'une limite, notamment en jouant avec les propriétés de certaines fonctions hyperboliques.
En prenant (symétrique sur l'axe y) comme fonction de substitution pour , annulant sa propriété de croissance exponentielle en multipliant son inverse par et retranchant au résultat on obtient une fonction similaire à la fonction signe, passant par (figure ci à droite).
De façon analogue, on peut déduire des relations similaires avec . Ces définitions de la fonction signe sont intéressantes car elles ne posent pas de condition sur la valeur de .
Formule explicite sans limite
Il est également possible d'expliciter la fonction en passant par les nombres complexes. En effet, en translatant la droite des réels d'une unité vers le haut dans le plan complexe, il sera plus commode de traiter le cas où . En prenant le cosinus de l'argument de , on obtient un nombre du signe de entre et et pour on obtient .
Il reste à prendre la partie entière pour et la partie entière par excès pour . Finalement, on écrit :