En mathématiques, on appelle identités remarquables ou encore égalités remarquables certaines égalités qui s'appliquent à des nombres, ou plus généralement à des variables polynomiales. Elles servent en général à accélérer les calculs, à simplifier certaines écritures, à factoriser ou à développer des expressions. Elles servent pour la résolution des équations du second degré et sont plus généralement utiles pour la recherche de solutions d'équations[Note 1].
La plupart de ces identités remarquables ont tout d'abord été démontrées à l'aide de raisonnements géométriques, puis ont été généralisées à des puissances supérieures par des calculs algébriques. L’une des plus anciennes sources est le Livre II des Éléments d’Euclide, propositions 4 et 7.
Les trois identités remarquables du second degré sont[1] :
La deuxième de ces identités peut être vue comme un cas particulier de la première, en prenant, au lieu de b, –b dans la première égalité. Ces égalités font l'objet d'un vocabulaire spécifique :
Définition d'un produit remarquable[1] — Les trois expressions suivantes sont appelées produit remarquable :
On définit de même :
Définition d'une somme remarquable[1] — Les trois expressions suivantes sont appelées somme remarquable :
Les identités remarquables permettent de résoudre une équation du second degré. Illustrons la méthode sur l'exemple suivant :
La méthode consiste à travailler la partie de l'expression qui ne dépend pas de x de manière à utiliser une des deux premières identités remarquables et factoriser la partie qui dépend de x :
Les trois premiers termes sont maintenant une somme remarquable, il est possible d'appliquer une identité remarquable et l'équation devient :
On reconnaît une nouvelle somme remarquable, l'équation s'écrit encore :
Un produit a.b de deux nombres a et b est nul si, et seulement si, a ou b est nul[Note 2]. Résoudre l'équation revient à résoudre deux équations du premier degré :
On trouve les deux solutions de l'équation, appelées aussi racines du polynôme :
La même méthode, appliquée à des coefficients , , et () au lieu des coefficients 1, 2, et –5 de l'exemple précédent, fait apparaitre le rôle du discriminant et les deux solutions.
Pour élever au carré un polynôme avec un nombre quelconque de termes, ajouter les carrés de chaque terme individuellement, puis ajouter le double de la somme des produits de chaque paire possible de termes.
Ces identités remarquables sont connues depuis les Babyloniens[3]. Il est possible qu'ils se soient rendu compte de ces égalités à l'aide de raisonnements géométriques. Il existe une méthode simple pour trouver la formule suivante[Note 3] :
La figure de droite représente un carré. On suppose que la longueur du côté du carré rose est égale à a et celle du carré bleu à b. L'aire du grand carré est égale à (a + b)2.
Il existe une autre manière d'exprimer cette aire : elle est la somme des aires des zones rose, bleue et des deux zones jaunes. L'aire rose est égale à a2 car c'est un carré de côté a, l'aire bleue est égale à b2, et chacune des deux aires jaunes est égale à ab car c'est un rectangle de côtés a et b. On obtient bien la formule annoncée.
Brahmagupta remarque que 22 - 3.12 = 1. Il applique son identité plusieurs fois, toujours avec n = 3. La première fois, il pose a = c = 2, b = d = 1. Il obtient :
Il recommence avec cette fois avec : a = c = 7, b = d = 4. Il obtient une nouvelle manière d'écrire 1 :
Il réapplique la même logique, il obtient encore une autre manière d'écrire 1 :
Cette égalité s'écrit encore :
Il obtient une fraction dont le carré est « presque » égal à 3, ce qui revient à dire que 18 817/10 864 est « presque » égal à √3. Si on calcule la fraction, on trouve un résultat dont les neuf premiers chiffres significatifs fournissent la meilleure approximation possible (avec le même nombre de décimales), à savoir : 1,73205081.
La même technique de démonstration que celle utilisée pour les formules de degré 2 montre que, si a et b désignent toujours deux nombres :
Appliqué encore une fois, on obtient :
De même,
On peut la généraliser à un degré n quelconque, à l'aide de la formule du binôme :
Les coefficients de l'expression, considérée comme un polynôme en a et en b sont appelés coefficients binomiaux. Comme b peut prendre une valeur négative, on obtient bien les deux formes précédentes.
La formule s'applique même si a et b ne sont pas des nombres. Ces lettres peuvent désigner deux matrices qui commutent entre elles. De manière générale, la formule est vraie dans un anneau (supposé unitaire, c'est-à-dire muni d'un élément unité pour tout a), si a et b commutent (ce qui est le cas en particulier si a ou b est égal à 1).
R. Brault, Mathématiques 3e : programme 2008, Paris, Hachette éducation, , 319 p. (ISBN978-2-01-125539-6) — La première partie de l'article s'inspire largement de cette référence.
↑Pascal Boyer, Petit compagnon des nombres et de leurs applications, Paris, Calvage et Mounet, , 648 p. (ISBN978-2-916352-75-6), I. Arithmétique de ℤ, chap. 4.3. (« Théorème (1, 2, 4, 8) de Hurwitz »), p. 67-70.