Jeff Paris

mathématicien britannique

Jeffrey Bruce Paris (né en 1944) est un mathématicien britannique connu pour ses travaux en logique, en particulier l'indécidabilité en arithmétique de Peano, le raisonnement incertain et la logique inductive, avec une attention particulière aux principes de la rationalité et du sens commun.

Jeff Paris
Jeff Paris à Berkeley
Biographie
Naissance
Voir et modifier les données sur Wikidata (79 ans)
Nom dans la langue maternelle
Jeffrey Bruce ParisVoir et modifier les données sur Wikidata
Nationalité
Formation
Activités
Conjoint
Alena Vencovská (d) (depuis )Voir et modifier les données sur Wikidata
Enfant
Autres informations
A travaillé pour
Membre de
Directeur de thèse
Site web
Distinctions

Biographie

modifier

Il passe son doctorat avec Robin Gandy à Manchester en 1969 en soutenant une thèse intitulée Large Cardinals and the Generalized Continuum Hypothesis[1].

Il est professeur de logique à l'université de Manchester et est élu membre de la British Academy en 1999[2].

En collaboration avec Leo Harrington, il démontre en 1977 le théorème dit aujourd'hui de Paris-Harrington, qui fournit le premier exemple d'énoncé « naturel » exprimable au premier ordre, « vrai », mais non démontrable dans l'arithmétique de Peano (arithmétique du premier ordre)[3]. Le théorème d'incomplétude de Gödel exhibe un tel énoncé pour l'arithmétique du premier ordre[4], mais qui utilise la prouvabilité par l'intermédiaire de codages arithmétiques, alors que l'énoncé de Paris et Harrington est plus « naturel » au sens où il n'est pas métamathématique comme celui de Gödel. Il s'agit en l'occurrence d'un résultat de combinatoire, une variante (plus forte) du théorème de Ramsey fini, qui se démontre (par exemple) en théorie des ensembles.

En collaboration avec Laurence Kirby, Jeff Paris démontre également en 1982 que le théorème de Goodstein, un résultat assez simple de théorie des nombres, est également indépendant de l'arithmétique de Peano[5].

Distinctions

modifier

Prix Whitehead (1983)

Notes et références

modifier
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Jeff Paris » (voir la liste des auteurs).
  1. (en) « Jeff B. Paris », sur le site du Mathematics Genealogy Project.
  2. British Academy Fellows.
  3. Paris et Harrington (1977).
  4. Le théorème d'incomplétude de Gödel est plus général, il s'applique par exemple à toutes les théories qui étendent l'arithmétique de Peano.
  5. Kirby et Paris (1982).

Bibliographie

modifier
  • Jeff Paris et Leo Harrington, « A mathematical incompleteness in Peano arithmetic », dans Jon Barwise, avec H. J. Keisler, K. Kunen, Y. N. Moschovakis et A. S. Troelstra, Handbook of mathematical logic, vol. 90, Amsterdam, North-Holland Publishing Co., coll. « Stud. Logic Found. Math. », , xi+1165 (ISBN 0-7204-2285-X, MR 3727432), p. 1133-1142
  • Laurie Kirby et Jeff Paris, « Accessible independence results for Peano arithmetic. », Bulletin of the London Mathematical Society, vol. 14, no 4,‎ , p. 285-293 (DOI 10.1112/blms/14.4.285, lire en ligne)
  • J. B. Paris, The uncertain reasoner's companion : a mathematical perspective, vol. 39, Cambridge University Press, coll. « Cambridge Tracts in Theoretical Computer Science », (ISBN 0521460891, DOI 10.1017/CBO9780511526596)

Voir aussi

modifier

Articles connexes

modifier

Liens externes

modifier