Lois de Joule (thermodynamique)

(Redirigé depuis Loi de Joule-Thomson)

En physique, et en particulier en thermodynamique, les deux lois de Joule, énoncées par le physicien anglais James Prescott Joule, sont deux lois décrivant le comportement des gaz. Les gaz parfaits répondent aux deux lois de Joule. Elles ne décrivent que très approximativement le comportement des gaz réels.

La première loi de Joule, ou loi de Joule et Gay-Lussac (en référence à Louis Joseph Gay-Lussac), énonce que l'énergie interne d'un gaz ne dépend que de la température. La deuxième loi de Joule, ou loi de Joule-Thomson (en référence à William Thomson (Lord Kelvin)), énonce que l'enthalpie d'un gaz ne dépend que de la température. Ces lois ne sont valables qu'à quantité de matière constante.

Première loi de Joule

modifier

Énoncé de la première loi de Joule

modifier

La première loi de Joule, ou loi de Joule et Gay-Lussac, énonce que, à quantité de matière constante :

Première loi de Joule ou loi de Joule et Gay-Lussac

Un gaz suit la première loi de Joule lorsque son énergie interne ne dépend que de la température[1],[2],[3],[4].

Mathématiquement, ceci implique que la différentielle de l'énergie interne du gaz peut s'écrire, à quantité de matière constante, sous la forme :

avec :

Soit la quantité de matière impliquée dans la transformation et la capacité thermique isochore molaire ; on a alors également :

Soit la masse de matière impliquée dans la transformation et la capacité thermique isochore massique ; on a alors également :

Formulation mathématique de la première loi de Joule

modifier

Pour une transformation thermodynamique réversible, dans laquelle seules les forces de pression travaillent, la différentielle de l'énergie interne peut s'écrire de façon générale, à quantité de matière constante, sous la forme :

La différentielle de l'entropie peut elle-même s'exprimer en fonction des coefficients calorimétriques, à quantité de matière constante :

On peut donc réécrire la différentielle de l'énergie interne sous la forme :

avec :

Toutes ces relations sont vraies quelle que soit la nature du système thermodynamique considéré. On a :

La première relation de Clapeyron donne :

Un gaz suit la première loi de Joule si son énergie interne ne dépend que de la température, à quantité de matière constante ; son énergie interne ne dépend donc pas du volume :

En conséquence, pour un gaz suivant la première loi de Joule :

  1. ,
  2. .

Si l'on montre la première relation, alors on a la deuxième, et réciproquement.

D'autre part, puisque la différentielle de est exacte, le théorème de Schwarz permet d'écrire :

Ainsi, pour un gaz suivant la première loi de Joule la capacité thermique isochore ne dépend pas du volume. En revanche elle dépend de la quantité de matière et de la température.

Détente de Joule et Gay-Lussac

modifier

Expérimentalement, on vérifie qu'un gaz suit la première loi de Joule si sa température ne change pas dans une détente de Joule-Gay-Lussac. Cette détente est une détente à énergie interne constante, effectuée par changement de volume du gaz.

En effet, en reprenant la différentielle de l'énergie interne, à quantité de matière constante :

on vérifie que dans une détente isoénergétique, soit , si la température ne varie pas, soit , alors que le volume varie, soit , alors .

D'autre part, on définit le coefficient de Joule-Gay-Lussac par :

Coefficient de Joule-Gay-Lussac :

Si l'on obtient expérimentalement , alors le gaz vérifie la première loi de Joule. En effet, si l'on écrit la différentielle de la température à partir de celle de l'énergie interne :

on a :

Ainsi, si alors .

Deuxième loi de Joule

modifier

Énoncé de la deuxième loi de Joule

modifier

La deuxième loi de Joule, ou loi de Joule-Thomson, énonce que, à quantité de matière constante :

Deuxième loi de Joule ou loi de Joule-Thomson

Un gaz suit la deuxième loi de Joule lorsque son enthalpie ne dépend que de la température[1],[2],[3],[4].

Mathématiquement, ceci implique que la différentielle de l'enthalpie du gaz peut s'écrire, à quantité de matière constante, sous la forme :

avec :

Soit la quantité de matière impliquée dans la transformation et la capacité thermique isobare molaire ; on a alors également :

Soit la masse de matière impliquée dans la transformation et la capacité thermique isobare massique ; on a alors également :

Formulation mathématique de la deuxième loi de Joule

modifier

Pour une transformation thermodynamique réversible, dans laquelle seules les forces de pression travaillent, la différentielle de l'enthalpie peut s'écrire de façon générale, à quantité de matière constante, sous la forme :

La différentielle de l'entropie peut elle-même s'exprimer en fonction des coefficients calorimétriques, à quantité de matière constante :

On peut donc réécrire la différentielle de l'enthalpie sous la forme :

avec :

  • la capacité thermique isobare ;
  • le coefficient de compression isotherme ;
  • l'enthalpie ;
  • la pression ;
  • l'entropie ;
  • la température ;
  • le volume.

Toutes ces relations sont vraies quelle que soit la nature du système thermodynamique considéré. On a :

La deuxième relation de Clapeyron donne :

Un gaz suit la deuxième loi de Joule si son enthalpie ne dépend que de la température, à quantité de matière constante ; son enthalpie ne dépend donc pas de la pression :

En conséquence, pour un gaz suivant la deuxième loi de Joule :

  1. ,
  2. .

Si l'on montre la première relation, alors on a la deuxième, et réciproquement.

D'autre part, puisque la différentielle de est exacte, le théorème de Schwarz permet d'écrire :

Ainsi, pour un gaz suivant la deuxième loi de Joule la capacité thermique isobare ne dépend pas de la pression. En revanche elle dépend de la quantité de matière et de la température.

Détente de Joule-Thomson

modifier

Expérimentalement, on vérifie qu'un gaz suit la deuxième loi de Joule si sa température ne change pas dans une détente de Joule-Thomson. Cette détente est une détente à enthalpie constante, effectuée par changement de pression du gaz.

En effet, en reprenant la différentielle de l'enthalpie, à quantité de matière constante :

on vérifie que dans une détente isenthalpe, soit , si la température ne varie pas, soit , alors que la pression varie, soit , alors .

D'autre part, on définit le coefficient de Joule-Thomson par[5] :

Coefficient de Joule-Thomson :

Si l'on obtient expérimentalement , alors le gaz vérifie la deuxième loi de Joule. En effet, si l'on écrit la différentielle de la température à partir de celle de l'enthalpie :

on a :

Ainsi, si alors .

Gaz vérifiant les lois de Joule

modifier

Cas des gaz parfaits

modifier

Dans le cas d'un gaz parfait répondant à l'équation des gaz parfaits :

avec :

on a, à quantité de matière constante :

En conséquence[2] :

Un gaz parfait, à quantité de matière constante, vérifie les deux lois de Joule.

La réciproque n'est pas vraie : tout gaz vérifiant les deux lois de Joule n'est pas nécessairement un gaz parfait.

Autres gaz

modifier

Tout gaz vérifiant les deux lois de Joule vérifie :

soit :

Ce système d'équations différentielles a pour solution[6] :

avec une constante quelconque qui peut être différente de la constante universelle des gaz parfaits.

Tout gaz dont l'équation d'état est de la forme , avec une constante quelconque, répond aux deux lois de Joule. Réciproquement, tout gaz répondant aux deux lois de Joule a une équation d'état de la forme , avec une constante quelconque. En conséquence :

Un gaz répondant aux deux lois de Joule peut ne pas être un gaz parfait.

Pour que le gaz soit un gaz parfait, il faut, en plus de la vérification des deux lois de Joule, connaitre un point permettant de déterminer que la constante . Si par exemple dans les Conditions Normales de Température et de Pression (CNTP : pression 1 atm et température 0 °C) le volume molaire de ce gaz est de 22,414 l, alors et le gaz est un gaz parfait. Si dans ces conditions le volume molaire est différent de 22,414 l alors et le gaz n'est pas un gaz parfait.

Notes et références

modifier
  1. a et b Lois de Joule, Encyclopædia Universalis.
  2. a b et c Lagière 1996, p. 226-227.
  3. a et b Gautron et al. 2021, p. 186.
  4. a et b Taillet et al. 2018, p. 404.
  5. Green Book de l'Union internationale de chimie pure et appliquée (IUPAC), p. 57.
  6. Albane Douillet, Catherine Even-Beaudoin, Nathalie Lebrun, Nathalie Lidgi-Guigui et Nicolas Vernier, Physique : Cours, exercices et méthodes, Dunod, , 2e éd., 576 p. (ISBN 9782100867578, lire en ligne), p. 486.

Bibliographie

modifier
  • Laurent Gautron, Christophe Balland, Laurent Cirio, Richard Mauduit, Odile Picon et Éric Wenner, Le Cours de physique : Licence, CAPES, Prépas, Dunod, coll. « Tout en fiches », , 2e éd., 592 p. (ISBN 9782100831548, lire en ligne), Fiche 70.
  • Michel Lagière, Physique industrielle des fluides : notions fondamentales et applications numériques, Éditions Technip, , 394 p. (ISBN 9782710807018, lire en ligne), p. 226-227.
  • Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Louvain-la-Neuve, De Boeck Supérieur, , 4e éd. (1re éd. 2008), 956 p. (ISBN 978-2-8073-0744-5, lire en ligne), p. 404.

Lien externe

modifier

Articles connexes

modifier