Utilisateur:Cbigorgne/Brouillon-maths
Formule d'Euler-Maclaurin
modifierMajorations du reste
modifierSi f est une fonction complexe 2k fois continûment dérivable sur le segment [p, q] (avec k ≥ 1), on peut majorer le reste (ou « terme d'erreur ») de la formule d'Euler-Maclaurin en utilisant la majoration des polynômes de Bernoulli d'indice pair[N 1] : :
Par exemple, avec , on a : .
L'inégalité, comme celles qui suivent, peut être réécrite en utilisant la formule due à Euler (pour k ≥ 1) : . On déduit que (on a l'équivalent : ).
Si f est une fonction complexe 2k + 1 fois continûment dérivable sur le segment [p, q] (avec k ≥ 0), en utilisant la majoration des polynômes de Bernoulli d'indice impair[N 1] : si :
on peut majorer le reste (ou « terme d'erreur ») de la formule d'Euler-Maclaurin[1],[N 3] :
Cohen[2] donne la majoration suivante des polynômes de Bernoulli d'indice impair : , avec comme conséquence :
Avec la majoration (si ) démontrée par Derrick Lehmer, on obtient l'inégalité[N 4] :
Pour le polynôme de Bernoulli B3(t), on a le maximum qui permet d'obtenir la majoration :
Notes
modifier- Dieudonné 1980, p. 301. Dieudonné note Bk les coefficients .
- Le résultat est valable pour k = 0 en prenant la valeur du prolongement analytique de la fonction : .
- Bourbaki, FVR, p. VI.20, donne la majoration .
- (en) Derrick Lehmer, « On the maxima and minima of Bernoulli polynomials », The American Mathematical Monthly, vol. 47, no 8, , p. 533–538 (DOI 10.2307/2303833, JSTOR 2303833).
- Dieudonné 1980, p. 304.
- Cohen 2007, p. 19
Leçons de mathématiques d'aujourd'hui
modifier- Leçons de mathématiques d'aujourd'hui, Ecole doctorale de Mathématiques et Informatique de Bordeaux
Année universitaire 2010-2011
- Laure SAINT-RAYMOND (ENS Paris): L'équation de Boltzmann : état de l'art et perspectives
Année universitaire 2009-2010
- Arnaud BEAUVILLE (Université de Nice) : "La théorie de Hodge et quelques applications"
- BISMUT Jean-Michel (Université d'Orsay) : Laplacien hypoelliptique et théorème de l'indice
- Christophe SOULE (IHES) : La théorie d'Arakelov
Année universitaire 2008-2009
- François LOESER (Ecole Normale Supérieure) : "de l'intégration p-adique à l'intégration motivique"
- Gilles DOWEK (Ecole Polytechnique) : Algorithmes et modèles : l'histoire d'une convergence
- Mikhail ZAIDENBERG (Université Grenoble 1) : Deux essais sur la géométrie affine
Année universitaire 2007-2008
- Persi DIACONIS (Université de Stanford) : Polynômes chromatiques et le problème des anniversaires
- J. KEATING (Université de Bristol) : Random matrices and the Riemann zeta-function
Année universitaire 2006-2007
- Sergiu KLAINERMANN (Université de Princeton) : Main open problems and recent results in General Relativity
+ Pansu et Frohlich
Groupes d'homotopie
modifierπn | πn+1 | πn+2 | πn+3 | πn+4 | πn+5 | πn+6 | πn+7 | πn+8 | πn+9 | πn+10 | πn+11 | πn+12 | πn+13 | πn+14 | πn+15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S2 | Z | Z | Z2 | Z2 | Z12 | Z2 | Z2 | Z3 | Z15 | Z2 | Z22 | Z12×Z2 | Z84×Z22 | Z22 | Z6 | |
S3 | Z | Z2 | Z2 | Z12 | Z2 | Z2 | Z3 | Z15 | Z2 | Z22 | Z12×Z2 | Z84×Z22 | Z22 | Z6 | ||
S4 | Z | Z2 | Z2 | Z×Z12 | Z22 | Z22 | Z24×Z3 | Z15 | Z2 | Z23 | Z120×Z12×Z2 | Z84×Z25 | Z26 | |||
S5 | Z | Z2 | Z2 | Z24 | Z2 | Z2 | Z2 | Z30 | Z2 | Z23 | Z72×Z2 | Z504×Z22 | ||||
S6 | Z | Z2 | Z2 | Z24 | 0 | Z | Z2 | Z60 | Z24×Z2 | Z23 | Z72×Z2 | |||||
S7 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 | Z120 | Z23 | Z24 | ||||||
S8 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 | Z×Z120 | Z24 | |||||||
S9 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 | Z240 | Z23 | |||||||
S10 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 | Z240 | Z22 |
Experiment with table format
Clean and colored
modifierπ1 | π2 | π3 | π4 | π5 | π6 | π7 | π8 | π9 | π10 | π11 | π12 | π13 | π14 | π15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S2 | 0 | Z | Z | Z2 | Z2 | Z12 | Z2 | Z2 | Z3 | Z15 | Z2 | Z22 | Z12×Z2 | Z84×Z22 | Z22 |
S3 | 0 | 0 | Z | Z2 | Z2 | Z12 | Z2 | Z2 | Z3 | Z15 | Z2 | Z22 | Z12×Z2 | Z84×Z22 | Z22 |
S4 | 0 | 0 | 0 | Z | Z2 | Z2 | Z×Z12 | Z22 | Z22 | Z24×Z3 | Z15 | Z2 | Z23 | Z120×Z12×Z2 | Z84×Z25 |
S5 | 0 | 0 | 0 | 0 | Z | Z2 | Z2 | Z24 | Z2 | Z2 | Z2 | Z30 | Z2 | Z23 | Z72×Z2 |
S6 | 0 | 0 | 0 | 0 | 0 | Z | Z2 | Z2 | Z24 | 0 | Z | Z2 | Z60 | Z24×Z2 | Z23 |
S7 | 0 | 0 | 0 | 0 | 0 | 0 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 | Z120 | Z23 |
S8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 | Z×Z120 |
S9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Z | Z2 | Z2 | Z24 | 0 | 0 | Z2 |
Complete piped
modifiern = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8 | n = 9 | n = 10 | n = 11 | n = 12 | n ≥ k + 2 | |
k = 0 | Z | |||||||||||
k = 1 | Z | 2 | ||||||||||
k = 2 | 2 | 2 | 2 | |||||||||
k = 3 | 2 | 12 | Z + 12 | 24 | ||||||||
k = 4 | 12 | 2 | 22 | 2 | 0 | |||||||
k = 5 | 2 | 2 | 22 | 2 | Z | 0 | ||||||
k = 6 | 2 | 3 | 24 + 3 | 2 | 2 | 2 | 2 | |||||
k = 7 | 3 | 15 | 15 | 30 | 60 | 120 | Z + 120 | 240 | ||||
k = 8 | 15 | 2 | 2 | 2 | 8 + 6 | 23 | 24 | 23 | 22 | |||
k = 9 | 2 | 22 | 23 | 23 | 23 | 24 | 25 | 24 | Z + 23 | 23 | ||
k = 10 | 22 | 12 + 2 | 40 + 4 + 2 + 32 | 18 + 8 | 18 + 8 | 24 + 2 | 82 + 2 + 32 | 24 + 2 | 12 + 2 | 22 + 3 | 2 + 3 | |
k = 11 | 12 + 2 | 84 + 22 | 84 + 25 | 504 + 22 | 504 + 4 | 504 + 2 | 504 + 2 | 504 + 2 | 504 | 504 | Z + 504 | 504 |
k = 12 | 84 + 22 | 22 | 26 | 23 | 240 | 0 | 0 | 0 | 4 + 3 | 2 | 22 | See below |
k = 13 | 22 | 6 | 8 + 22 + 32 | 22 + 3 | 6 | 6 | 22 + 3 | 6 | 6 | 22 + 3 | 22 + 3 | |
k = 14 | 6 | 30 | 840 + 9 + 22 | 22 + 3 | 12 + 2 | 24 + 4 | 60 + 48 + 8 | 16 + 4 | 16 + 2 | 16 + 2 | 24 + 16 | |
k = 15 | 30 | 30 | 30 | 15 + 22 | 10 + 4 + 32 | 120 + 23 | 120 + 25 | 240 + 23 | 240 + 22 | 30 + 16 | 30 + 16 | |
k = 16 | 30 | 22 + 3 | 23 + 32 | 22 | 504 + 22 | 24 | 27 | 24 | 30 + 16 | 2 | 2 | |
k = 17 | 22 + 3 | 12 + 22 | 8 + 42 + 22 + 32 | 4 + 22 | 24 | 24 | 25 + 3 | 24 | 23 | 23 | 24 | |
k = 18 | 12 + 22 | 12 + 22 | 40 + 4 + 25 + 32 | 24 + 22 | 8 + 22 + 32 | 24 + 2 | 82 + 42 + 9 | 8 + 2 + 3 | 8 + 22 + 3 | 8 + 4 + 2 | 32 + 30 + 42 | |
k = 19 | 12 + 22 | 132 + 2 | 132 + 25 | 66 + 8 | 264 + 32 | 264 + 2 | 264 + 2 | 264 + 2 | 22 + 32 | 264 + 23 | 264 + 25 |
n = 13 | n = 14 | n = 15 | n = 16 | n = 17 | n = 18 | n = 19 | n = 20 | n ≥ k + 2 | |
k = 12 | 2 | 0 | |||||||
k = 13 | 6 | Z + 3 | 3 | ||||||
k = 14 | 16 + 2 | 8 + 2 | 4 + 2 | 22 | |||||
k = 15 | 32 + 30 | 32 + 30 | 32 + 30 | Z + 32 + 30 | 32 + 30 | ||||
k = 16 | 2 | 8 + 6 | 23 | 24 | 23 | 22 | |||
k = 17 | 24 | 24 | 25 | 26 | 25 | Z + 24 | 24 | ||
k = 18 | 82 + 2 | 82 + 2 | 83 + 2 + 3 | 83 + 2 + 3 | 82 + 2 | 8 + 6 | 8 + 22 | 8 + 2 | |
k = 19 | 264 + 23 | 66 + 8 + 4 | 264 + 22 | 8 + 22 + 3 + 11 | 264 + 22 | 66 + 8 | 66 + 8 | Z + 66 + 8 | 132 + 8 |
Complete and uncluttered
modifier
n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8 | n = 9 | n = 10 | n = 11 | n = 12 | n ≥ k + 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
k = 0 | Z | |||||||||||
k = 1 | Z | 2 | ||||||||||
k = 2 | 2 | 2 | 2 | |||||||||
k = 3 | 2 | 12 | Z + 12 | 24 | ||||||||
k = 4 | 12 | 2 | 22 | 2 | 0 | |||||||
k = 5 | 2 | 2 | 22 | 2 | Z | 0 | ||||||
k = 6 | 2 | 3 | 24 + 3 | 2 | 2 | 2 | 2 | |||||
k = 7 | 3 | 15 | 15 | 30 | 60 | 120 | Z + 120 | 240 | ||||
k = 8 | 15 | 2 | 2 | 2 | 8 + 6 | 23 | 24 | 23 | 22 | |||
k = 9 | 2 | 22 | 23 | 23 | 23 | 24 | 25 | 24 | Z + 23 | 23 | ||
k = 10 | 22 | 12 + 2 | 40 + 4 + 2 + 32 | 18 + 8 | 18 + 8 | 24 + 2 | 82 + 2 + 32 | 24 + 2 | 12 + 2 | 22 + 3 | 2 + 3 | |
k = 11 | 12 + 2 | 84 + 22 | 84 + 25 | 504 + 22 | 504 + 4 | 504 + 2 | 504 + 2 | 504 + 2 | 504 | 504 | Z + 504 | 504 |
k = 12 | 84 + 22 | 22 | 26 | 23 | 240 | 0 | 0 | 0 | 4 + 3 | 2 | 22 | See below |
k = 13 | 22 | 6 | 8 + 22 + 32 | 22 + 3 | 6 | 6 | 22 + 3 | 6 | 6 | 22 + 3 | 22 + 3 | |
k = 14 | 6 | 30 | 840 + 9 + 22 | 22 + 3 | 12 + 2 | 24 + 4 | 60 + 48 + 8 | 16 + 4 | 16 + 2 | 16 + 2 | 24 + 16 | |
k = 15 | 30 | 30 | 30 | 15 + 22 | 10 + 4 + 32 | 120 + 23 | 120 + 25 | 240 + 23 | 240 + 22 | 30 + 16 | 30 + 16 | |
k = 16 | 30 | 22 + 3 | 23 + 32 | 22 | 504 + 22 | 24 | 27 | 24 | 30 + 16 | 2 | 2 | |
k = 17 | 22 + 3 | 12 + 22 | 8 + 42 + 22 + 32 | 4 + 22 | 24 | 24 | 25 + 3 | 24 | 23 | 23 | 24 | |
k = 18 | 12 + 22 | 12 + 22 | 40 + 4 + 25 + 32 | 24 + 22 | 8 + 22 + 32 | 24 + 2 | 82 + 42 + 9 | 8 + 2 + 3 | 8 + 22 + 3 | 8 + 4 + 2 | 32 + 30 + 42 | |
k = 19 | 12 + 22 | 132 + 2 | 132 + 25 | 66 + 8 | 264 + 32 | 264 + 2 | 264 + 2 | 264 + 2 | 22 + 32 | 264 + 23 | 264 + 25 |
n = 13 | n = 14 | n = 15 | n = 16 | n = 17 | n = 18 | n = 19 | n = 20 | n ≥ k + 2 | |
---|---|---|---|---|---|---|---|---|---|
k = 12 | 2 | 0 | |||||||
k = 13 | 6 | Z + 3 | 3 | ||||||
k = 14 | 16 + 2 | 8 + 2 | 4 + 2 | 22 | |||||
k = 15 | 32 + 30 | 32 + 30 | 32 + 30 | Z + 32 + 30 | 32 + 30 | ||||
k = 16 | 2 | 8 + 6 | 23 | 24 | 23 | 22 | |||
k = 17 | 24 | 24 | 25 | 26 | 25 | Z + 24 | 24 | ||
k = 18 | 82 + 2 | 82 + 2 | 83 + 2 + 3 | 83 + 2 + 3 | 82 + 2 | 8 + 6 | 8 + 22 | 8 + 2 | |
k = 19 | 264 + 23 | 66 + 8 + 4 | 264 + 22 | 8 + 22 + 3 + 11 | 264 + 22 | 66 + 8 | 66 + 8 | Z + 66 + 8 | 132 + 8 |
Current
modifierSn → | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S≥13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
π<n(Sn) | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | |
π0+n(Sn) | 2 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ |
π1+n(Sn) | ⋅ | ⋅ | ∞ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
π2+n(Sn) | ⋅ | ⋅ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
π3+n(Sn) | ⋅ | ⋅ | 2 | 12 | ∞⋅12 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
π4+n(Sn) | ⋅ | ⋅ | 12 | 2 | 22 | 2 | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ |
π5+n(Sn) | ⋅ | ⋅ | 2 | 2 | 22 | 2 | ∞ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ |
π6+n(Sn) | ⋅ | ⋅ | 2 | 3 | 24⋅3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
π7+n(Sn) | ⋅ | ⋅ | 3 | 15 | 15 | 30 | 60 | 120 | ∞⋅120 | 240 | 240 | 240 | 240 | 240 |
π8+n(Sn) | ⋅ | ⋅ | 15 | 2 | 2 | 2 | 24⋅2 | 23 | 24 | 23 | 22 | 22 | 22 | 22 |
π9+n(Sn) | ⋅ | ⋅ | 2 | 22 | 23 | 23 | 23 | 24 | 25 | 24 | ∞⋅23 | 23 | 23 | 23 |
π10+n(Sn) | ⋅ | ⋅ | 22 | 12⋅2 | 120⋅12⋅2 | 72⋅2 | 72⋅2 | 24⋅2 | 242⋅2 | 24⋅2 | 12⋅2 | 6⋅2 | 6 | 6 |
π11+n(Sn) | ⋅ | ⋅ | 12⋅2 | 84⋅22 | 84⋅25 | 504⋅22 | 504⋅4 | 504⋅2 | 504⋅2 | 504⋅2 | 504 | 504 | ∞⋅504 | 504 |
π12+n(Sn) | ⋅ | ⋅ | 84⋅22 | 22 | 26 | 23 | 240 | ⋅ | ⋅ | ⋅ | 12 | 2 | 22 | See below |
π13+n(Sn) | ⋅ | ⋅ | 22 | 6 | 24⋅6⋅2 | 6⋅2 | 6 | 6 | 6⋅2 | 6 | 6 | 6⋅2 | 6⋅2 | |
π14+n(Sn) | ⋅ | ⋅ | 6 | 30 | 2520⋅6⋅2 | 6⋅2 | 12⋅2 | 24⋅4 | 240⋅24⋅4 | 16⋅4 | 16⋅2 | 16⋅2 | 48⋅4⋅2 | |
π15+n(Sn) | ⋅ | ⋅ | 30 | 30 | 30 | 30⋅2 | 60⋅6 | 120⋅23 | 120⋅25 | 240⋅23 | 240⋅22 | 240⋅2 | 240⋅2 | |
π16+n(Sn) | ⋅ | ⋅ | 30 | 6⋅2 | 62⋅2 | 22 | 504⋅22 | 24 | 27 | 24 | 240⋅2 | 2 | 2 | |
π17+n(Sn) | ⋅ | ⋅ | 6⋅2 | 12⋅22 | 24⋅12⋅4⋅22 | 4⋅22 | 24 | 24 | 6⋅24 | 24 | 23 | 23 | 24 | |
π18+n(Sn) | ⋅ | ⋅ | 12⋅22 | 12⋅22 | 120⋅12⋅25 | 24⋅22 | 24⋅6⋅2 | 24⋅2 | 504⋅24⋅2 | 24⋅2 | 24⋅22 | 8⋅4⋅2 | 480⋅42⋅2 | |
π19+n(Sn) | ⋅ | ⋅ | 12⋅22 | 132⋅2 | 132⋅25 | 264⋅2 | 1056⋅8 | 264⋅2 | 264⋅2 | 264⋅2 | 264⋅6 | 264⋅23 | 264⋅25 |
Sn → | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | S≥21 |
---|---|---|---|---|---|---|---|---|---|
π12+n(Sn) | 2 | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ |
π13+n(Sn) | 6 | ∞⋅3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
π14+n(Sn) | 16⋅2 | 8⋅2 | 4⋅2 | 22 | 22 | 22 | 22 | 22 | 22 |
π15+n(Sn) | 480⋅2 | 480⋅2 | 480⋅2 | ∞⋅480⋅2 | 480⋅2 | 480⋅2 | 480⋅2 | 480⋅2 | 480⋅2 |
π16+n(Sn) | 2 | 24⋅2 | 23 | 24 | 23 | 22 | 22 | 22 | 22 |
π17+n(Sn) | 24 | 24 | 25 | 26 | 25 | ∞⋅24 | 24 | 24 | 24 |
π18+n(Sn) | 82⋅2 | 82⋅2 | 82⋅2 | 24⋅82⋅2 | 82⋅2 | 8⋅4⋅2 | 8⋅22 | 8⋅2 | 8⋅2 |
π19+n(Sn) | 264⋅23 | 264⋅4⋅2 | 264⋅22 | 264⋅22 | 264⋅22 | 264⋅2 | 264⋅2 | ∞⋅264⋅2 | 264⋅2 |
Chopped and colored
modifierπ1 | π2 | π3 | π4 | π5 | π6 | π7 | |
---|---|---|---|---|---|---|---|
S1 | Z | 0 | 0 | 0 | 0 | 0 | 0 |
S2 | 0 | Z | Z | Z/(2) | Z/(2) | Z/(12) | Z/(2) |
S3 | 0 | 0 | Z | Z/(2) | Z/(2) | Z/(12) | Z/(2) |
S4 | 0 | 0 | 0 | Z | Z/(2) | Z/(2) | Z×Z/(12) |
S5 | 0 | 0 | 0 | 0 | Z | Z/(2) | Z/(2) |
S6 | 0 | 0 | 0 | 0 | 0 | Z | Z/(2) |
S7 | 0 | 0 | 0 | 0 | 0 | 0 | Z |
πn+0 | πn+1 | πn+2 | πn+3 | πn+4 | πn+5 | πn+6 | |
---|---|---|---|---|---|---|---|
S1 | Z | 0 | 0 | 0 | 0 | 0 | 0 |
S2 | Z | Z | Z/(2) | Z/(2) | Z/(12) | Z/(2) | Z/(2) |
S3 | Z | Z/(2) | Z/(2) | Z/(12) | Z/(2) | Z/(2) | Z/(3) |
S4 | Z | Z/(2) | Z/(2) | Z×Z/(12) | Z/(2)2 | Z/(2)2 | Z/(24)×Z/(3) |
S5 | Z | Z/(2) | Z/(2) | Z/(24) | Z/(2) | Z/(2) | Z/(2) |
S6 | Z | Z/(2) | Z/(2) | Z/(24) | 0 | Z | Z/(2) |
S7 | Z | Z/(2) | Z/(2) | Z/(24) | 0 | 0 | Z/(2) |