Utilisateur:Dr Philippe Degbomont/Immunoglobuline A

Schéma d'un dimère d'immunoglobuline A montrant la chaîne H (en bleu), la chaîne L (en rouge), la chaîne J (en magenta) et le composant sécrétoire (en jaune).
Deux vues, l'une tournée à 90 degrés l'une par rapport à l'autre, des chaînes d'acides aminés comprenant des IgA1 sécrétoires. Les couleurs sont les suivantes: chaînes H (bleu et bleu clair), chaînes L (rouge et rouge clair), chaîne J (magenta) et composant sécrétoire (jaune). Les coordonnées de chaque atome de carbone de l'épine dorsale ont été dérivées de l' entrée de la PDB 3CHN[1].
Deux vues, l'une tournée à 90 degrés l'une par rapport à l'autre, des chaînes d'acides aminés comprenant l' IgA2 sécrétoire. Les couleurs sont les suivantes: chaînes H (bleu et bleu clair), chaînes L (rouge et rouge clair), chaîne J (magenta) et composant sécrétoire (jaune). Les coordonnées de chaque atome de carbone de l'épine dorsale ont été dérivées de l' entrée de la PDB 3cm9 [2].

L’immunoglobuline A (IgA, également appelée IgAs dans sa forme sécrétoire) est un anticorps qui joue un rôle crucial dans la fonction immunitaire des muqueuses. La quantité d'IgA produite en association avec les membranes muqueuses est supérieure à celle de tous les autres types d'anticorps combinés[3]. En termes absolus, entre trois et cinq grammes sont sécrétés chaque jour dans la lumière intestinale[4]. Cela représente jusqu'à 15% de la totalité des immunoglobulines produites dans le corps[5].

L'IgA a deux sous-classes (IgA1 et IgA2) et peut être produite sous forme monomère ou dimérique. La forme dimérique IgA est la plus répandue et est également appelée IgA sécrétoire (IgAs). L'IgAs est la principale immunoglobuline présente dans les sécrétions muqueuses, notamment les larmes, la salive, la sueur, le colostrum et les sécrétions des voies génito-urinaires, gastro-intestinales, de la prostate et de l'épithélium respiratoire. On la trouve également en petites quantités dans le sang. Le composant sécrétoire de IgAs empêche l'immunoglobuline d'être dégradée par les enzymes protéolytiques. Ainsi, les IgAs peuvent survivre dans l'environnement gastro-intestinal sévère et offrent une protection contre les microbes qui se multiplient dans les sécrétions corporelles[6]. Les IgAs peuvent également inhiber les effets inflammatoires d'autres immunoglobulines[7]. L'IgA est un faible activateur du système du complément et n'opsonise que faiblement.

Formes modifier

IgA1 vs. IgA2 modifier

L'IgA existe en deux isotypes, IgA1 et IgA2. Ce sont deux protéines fortement glycosylées[8]. Alors que les IgA1 prédominent dans le sérum (~ 80%), les pourcentages d'IgA2 sont plus élevés dans les sécrétions que dans le sérum (~ 35% dans les sécrétions)[9]. Le rapport entre les cellules sécrétant IgA1 et IgA2 varie selon les différents tissus lymphoïdes du corps humain: [10]

  • L'IgA1 est la sous-classe prédominante d'IgA présente dans le sérum. La plupart des tissus lymphoïdes ont une prédominance de cellules productrices d'IgA1[11].
  • Dans IgA2, les chaînes lourdes et légères ne sont pas liées par un pont disulfure, mais par des liaisons non covalentes. Dans les tissus lymphoïdes sécréteurs (par exemple, le tissu lymphoïde associé à l'intestin ou GALT), la part de la production d'IgA2 est plus importante que dans les organes lymphoïdes non sécréteurs (par exemple la rate, les ganglions lymphatiques périphériques).

Des anticorps IgA1 et IgA2 ont été trouvés dans des sécrétions externes comme le colostrum, le lait maternel, les larmes et la salive, où l'IgA2 est plus importante que dans le sang[9]. Les antigènes polysaccharidiques ont tendance à induire plus d'IgA2 que les antigènes protéiques[10].

Les deux IgA1 et IgA2 peuvent être sous forme liée à la membrane[12]. ( voir récepteur des cellules B )

IgA sérique vs IgA sécrétoire modifier

Il est également possible de distinguer les formes d'IgA en fonction de leur localisation, soit sérique soit sécrétoire.

Dans les IgA sécrétoires, forme retrouvée dans les sécrétions, des polymères de 2-4 monomères d'IgA sont liés par deux chaînes supplémentaires; en tant que tel, le poids moléculaire de slgA est de 385.000 D. L'une d'entre elles est la chaîne J (chaîne de jonction), qui est un polypeptide de masse moléculaire 15 kD, riche en cystéine et structurellement complètement différente des autres chaînes d'immunoglobuline. Cette chaîne est formée dans les cellules sécrétrices d'IgA.

Les formes oligomères d'IgA dans les sécrétions externes (muqueuses) contiennent également un polypeptide d'une masse moléculaire beaucoup plus grande (70 kD) appelé composant sécrétoire produit par les cellules épithéliales. Cette molécule provient du récepteur poly-Ig (130 kD) qui est responsable de l'absorption et du transport transcellulaire d'IgA oligomères (mais non monomères) à travers les cellules épithéliales et dans les sécrétions telles que les larmes, la salive, la sueur et le liquide digestif.

Physiologie modifier

IgA sérique modifier

Dans le sang, les IgA interagissent avec un récepteur Fc appelé FcαRI (ou CD89), qui est exprimé sur les cellules immunitaires effectrices, afin de déclencher des réactions inflammatoires[13]. La fixation de FcαRI sur des complexes immuns contenant des IgA entraîne une cytotoxicité à médiation cellulaire dépendante des anticorps (ADCC), une dégranulation des éosinophiles et des basophiles, une phagocytose par les monocytes, les macrophages et les neutrophiles, ainsi que le déclenchement de l'activité respiratoire explosive par les leucocytes polymorphonucléaires[13].

IgA sécrétoire modifier

La prévalence élevée d'IgA dans les muqueuses résulte d'une coopération entre les plasmocytes producteurs d'IgA polymérique (IgAp) et les cellules épithéliales muqueuses exprimant un récepteur d'immunoglobuline appelé récepteur d'Ig polymérique (pIgR). Le IgAp est libéré des cellules plasmatiques activées voisines et se lie au pIgR. Cela se traduit par le transport de l'IgA à travers les cellules épithéliales de la muqueuse et son clivage à partir de pIgR pour une libération dans les sécrétions externes[13].

La production d'IgA contre des antigènes spécifiques dépend de l'échantillonnage des cellules M et des cellules dendritiques sous-jacentes, de l'activation des cellules T et du changement de classe de cellules B dans le GALT (Tissu lymphoïde associé à l'intestin ou Gut Associated Lymphoid Tissue), les ganglions lymphatiques mésentériques et les follicules lymphoïdes isolés dans l'intestin grêle[14].

L'IgA polymérique (principalement le dimère sécrétoire) est produite par les plasmocytes de la lamina propria adjacente aux surfaces muqueuses. Il se lie au récepteur d'immunoglobuline polymérique situé sur la surface basolatérale des cellules épithéliales et est absorbé dans la cellule par endocytose. Le complexe récepteur-IgA traverse les compartiments cellulaires avant d’être sécrété à la surface luminale des cellules épithéliales, toujours attachées au récepteur. Il se produit une protéolyse du récepteur et la molécule dimérique d'IgA, ainsi qu'une partie du récepteur appelée composant sécrétoire, sont libres de diffuser dans toute la lumière[15]. Dans l'intestin, les IgA peuvent se lier à la couche de mucus recouvrant les cellules épithéliales. De cette manière, une barrière est formée qui est capable de neutraliser les menaces avant qu'elles n'atteignent les cellules épithéliales.

Les IgAs agissent principalement en bloquant les récepteurs épithéliaux (par exemple, en liant leurs ligands à des agents pathogènes), en empêchant stériquement la fixation aux cellules épithéliales et par exclusion immunitaire[14]. Puisque l'IgAs est une opsonine faible et un activateur médiocre du complément, la simple liaison d'un agent pathogène ne suffit pas nécessairement pour le contenir: des épitopes spécifiques peuvent devoir être liés pour entraver stériquement l'accès à l'épithélium[14].

L'exclusion immunitaire est un processus consistant à agglutiner des antigènes polyvalents ou des agents pathogènes en les réticulant avec des anticorps, en les piégeant dans la couche de mucus et/ou en les éliminant par voie péristaltique. Les chaînes oligosaccharidiques du composant d'IgA peuvent s'associer à la couche de mucus située au sommet des cellules épithéliales[14].

La clairance des IgA dépend au moins en partie des récepteurs d'asialoglycoprotéines, qui reconnaissent les IgA N-glycanes à terminaison galactose[8].

Pathologie modifier

Génétique modifier

Un taux d'IgA diminué ou absent en raison d'une incapacité héréditaire à produire de l'IgA est appelée déficit sélectif en IgA et peut produire un déficit immunitaire cliniquement significatif[16].

Les anticorps anti-IgA, parfois présents chez les personnes dont l'IgA est faible ou absente, peuvent entraîner de graves réactions anaphylactiques lors de la transfusion de produits sanguins contenant par ailleurs de l'IgA. Cependant, la plupart des personnes soupçonnées de réactions anaphylactiques à IgA avaient présenté des réactions généralisées aiguës qui avaient une origine autre que la transfusion d’anti-IgA[17].

Microbienne modifier

Les espèces Neisseria, y compris Neisseria gonorrhoeae (qui cause la blennorragie)[18], Streptococcus pneumoniae[19] et Haemophilus influenzae de type B[20] libèrent toutes une protéase qui détruit les IgA. De plus, il a été démontré que les espèces de Blastocystis avaient plusieurs sous-types qui génèrent des enzymes protéases aspartiques et cystéiques qui dégradent les IgA humaines[21].

Auto-immune et à médiation immunitaire modifier

La néphropathie à IgA est causée par des dépôts d’IgA dans les reins. On ne sait pas encore pourquoi les dépôts d’IgA se produisent dans cette maladie chronique. Certaines théories suggèrent qu'une anomalie du système immunitaire entraîne ces dépôts[22].

La maladie cœliaque implique une pathologie des IgA en raison de la présence d’anticorps anti-endomysiaux IgA[23],[24].

Le purpura de Henoch-Schönlein (HSP) est un trouble systémique provoqué par des dépôts d'IgA et du composant 3 du complément (C3) dans les petits vaisseaux. HSP survient généralement chez les petits enfants et concerne la peau et les tissus conjonctifs, le scrotum, les articulations, le tractus gastro-intestinal et les reins. Il suit généralement une infection des voies respiratoires supérieures et disparaît en quelques semaines à mesure que le foie élimine les agrégats d'IgA[25].

La dermatose bulleuse à IgA linéaire et le pemphigus à IgA sont deux exemples de maladies immuno-bulleuses à médiation par les IgA. Les maladies immuno-bulleuses à médiation IgA peuvent souvent être difficiles à traiter même avec des médicaments habituellement efficaces tels que le rituximab[26].

Induction par des médicaments modifier

La vancomycine peut induire une dermatose bulleuse à IgA linéaire chez certains patients.

Voir également modifier

  • Liste des antigènes cibles du pemphigus
  • TGF beta

Références modifier

  1. « Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity », Mucosal Immunology, vol. 2, no 1,‎ , p. 74–84 (PMID 19079336, DOI 10.1038/mi.2008.68)
  2. « The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses », The Journal of Biological Chemistry, vol. 284, no 8,‎ , p. 5077–87 (PMID 19109255, PMCID 2643523, DOI 10.1074/jbc.M807529200)
  3. « Intestinal IgA synthesis: regulation of front-line body defences », Nature Reviews. Immunology, vol. 3, no 1,‎ , p. 63–72 (PMID 12511876, DOI 10.1038/nri982)
  4. « Let's go mucosal: communication on slippery ground », Trends in Immunology, vol. 25, no 11,‎ , p. 570–7 (PMID 15489184, DOI 10.1016/j.it.2004.09.005)
  5. « The functional interactions of commensal bacteria with intestinal secretory IgA », Current Opinion in Gastroenterology, vol. 23, no 6,‎ , p. 673–8 (PMID 17906446, DOI 10.1097/MOG.0b013e3282f0d012)
  6. Luiz C. Junqueira et Jose Carneiro, Basic Histology, McGraw-Hill, (ISBN 0-8385-0590-2)Modèle:Pn
  7. « Mucosal immunity and vaccines », Nature Medicine, vol. 11, no 4 Suppl,‎ , S45-53 (PMID 15812489, DOI 10.1038/nm1213)
  8. a et b « Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review », Journal of Autoimmunity, vol. 57,‎ , p. 1–13 (PMID 25578468, PMCID 4340844, DOI 10.1016/j.jaut.2014.12.002)
  9. a et b « IgA subclasses in various secretions and in serum », Immunology, vol. 47, no 2,‎ , p. 383–5 (PMID 7118169, PMCID 1555453)
  10. a et b « Subclass distribution of natural salivary IgA antibodies against pneumococcal capsular polysaccharide of type 14 and pneumococcal surface adhesin A (PsaA) in children », Clinical and Experimental Immunology, vol. 143, no 3,‎ , p. 543–9 (PMID 16487254, PMCID 1809616, DOI 10.1111/j.1365-2249.2006.03009.x)
  11. « The immune geography of IgA induction and function », Mucosal Immunology, vol. 1, no 1,‎ , p. 11–22 (PMID 19079156, DOI 10.1038/mi.2007.6)
  12. « Alleles and isoforms of human membrane-bound IgA1 », Molecular Immunology, vol. 45, no 13,‎ , p. 3624–30 (PMID 18538846, DOI 10.1016/j.molimm.2008.04.023)
  13. a b et c « The IgA system: a comparison of structure and function in different species », Veterinary Research, vol. 37, no 3,‎ , p. 455–67 (PMID 16611558, DOI 10.1051/vetres:2006010)
  14. a b c et d « Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut », Mucosal Immunology, vol. 4, no 6,‎ , p. 603–11 (PMID 21975936, PMCID 3774538, DOI 10.1038/mi.2011.41)
  15. « The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA », Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no 19,‎ , p. 8796–800 (PMID 1924341, PMCID 52597, DOI 10.1073/pnas.88.19.8796, Bibcode 1991PNAS...88.8796K)
  16. « Selective IgA deficiency », Journal of Clinical Immunology, vol. 30, no 1,‎ , p. 10–6 (PMID 20101521, PMCID 2821513, DOI 10.1007/s10875-009-9357-x)
  17. « IgA anaphylactic transfusion reactions », Transfusion Medicine Reviews, vol. 9, no 1,‎ , p. 1–8 (PMID 7719037, DOI 10.1016/S0887-7963(05)80026-4)
  18. « IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product », The EMBO Journal, vol. 3, no 7,‎ , p. 1595–601 (PMID 6430698, PMCID 557564)
  19. « Production of immunoglobulin A protease by Streptococcus pneumoniae from animals », Infection and Immunity, vol. 58, no 9,‎ , p. 2733–7 (PMID 2117567, PMCID 313560)
  20. « A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells », Molecular Microbiology, vol. 14, no 2,‎ , p. 217–33 (PMID 7830568, DOI 10.1111/j.1365-2958.1994.tb01283.x)
  21. « Update on the pathogenic potential and treatment options for Blastocystis sp », Gut Pathogens, vol. 6,‎ , p. 17 (PMID 24883113, PMCID 4039988, DOI 10.1186/1757-4749-6-17)
  22. IgA Nephropathy on eMedicine
  23. « Immunoglobulin A (IgA) deficiency and alternative celiac disease-associated antibodies in sera submitted to a reference laboratory for endomysial IgA testing », Clinical and Diagnostic Laboratory Immunology, vol. 7, no 2,‎ , p. 192–6 (PMID 10702491, PMCID 95847, DOI 10.1128/cdli.7.2.192-196.2000)
  24. « Physiology of IgA and IgA deficiency », Journal of Clinical Immunology, vol. 21, no 5,‎ , p. 303–9 (PMID 11720003, DOI 10.1023/A:1012241117984)
  25. « Henoch-Schönlein purpura nephritis », Journal of the American Society of Nephrology, vol. 10, no 12,‎ , p. 2637–44 (PMID 10589705, lire en ligne)
  26. « Persistence of Autoreactive IgA-Secreting B Cells Despite Multiple Immunosuppressive Medications Including Rituximab », JAMA Dermatology, vol. 151, no 6,‎ , p. 646–50 (PMID 25901938, DOI 10.1001/jamadermatol.2015.59)

Liens externes modifier

[[Catégorie:Système immunitaire]] [[Catégorie:Glycoprotéine]] [[Catégorie:Anticorps]] [[Catégorie:Pages avec des traductions non relues]]