Utilisateur:Gueye12/brouillon

Page en construction

Courbe de traction d'un essai de traction interrompu dans le domaine plastique : déformation élastique εe et déformation plastique εp.
Indentation plastique d'un blindage par des projectiles.
Résultat d'une déformation plastique sur un ballon de baudruche.

La déformation plastique est la déformation irréversible d'un objet ; elle se produit par un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau.

Lorsqu'une pièce est sollicitée (on la tire, on la comprime, on la tordetc.), celle-ci commence par se déformer de manière réversible (déformation élastique), c'est-à-dire que ses dimensions changent, mais elle reprend sa forme initiale lorsque la sollicitation s'arrête. Certains matériaux, dits fragiles, cassent dans ce mode de déformation si la sollicitation est trop forte.

Pour les matériaux dits ductiles, une augmentation suffisante de la sollicitation entraîne une déformation définitive ; à l'arrêt de la sollicitation, la pièce reste déformée. C'est par exemple le cas d'une petite cuillère qui a été tordue : on ne pourra jamais la redresser pour lui faire reprendre sa forme initiale.

Applications pratiques modifier

La déformation plastique permet la mise en forme de pièces (forgeage, martelage, tréfilage, filage, laminage, estampage, emboutissageetc.). Elle permet aussi d'absorber l'énergie d'un choc et augmente la capacité de résistance à la rupture et la protection des personnes, comme dans le cas de la tôle d'une voiture ou d'un mousqueton d'escalade.

En résistance des matériaux, il peut être nécessaire de quantifier la déformation plastique résultant d'une sollicitation. En effet, dans certains domaines, on interdit toute déformation plastique, on s'attache alors à ce qu'à aucun moment la contrainte ne dépasse la limite d'élasticité ; pour cela, on applique souvent un coefficient de sécurité. Mais si cette manière de concevoir est prudente, elle donne en revanche des mécanismes et des structures lourds. Si l'environnement et le comportement du système sont maîtrisés, on peut admettre une déformation plastique lors de certaines phases de vie du système, mais il faut pouvoir quantifier ces déformations afin de s'assurer que cela ne compromet pas le fonctionnement du système.

Essai de traction modifier

Sur un essai de traction simple (uniaxial), la déformation plastique produit un allongement irréversible de l'éprouvette. Sur la courbe contrainte-déformation, la partie élastique correspond à la partie linéaire (droite) de la courbe, le domaine plastique correspond à l'infléchissement de cette courbe. La limite entre les deux domaine définit la limite d'élasticité notée ici Re.

Mécanisme de la déformation plastique modifier

Dans les métaux, la déformation plastique se produit par un glissement des plans atomiques les uns sur les autres, c'est à dire à la manière des cartes à jouer d'un paquet. Ce glissement de plans atomiques se fait grâce au déplacement de défauts linéaires appelés « dislocations ». À un stade avancé de la déformation, les dislocations permettant ces glissements se localisent dans certaines zones de la pièce déformée, préférentiellement les zones de concentration de contraintes. La localisation se traduit par la formation de bandes dites « bandes de Hartmann-Lüders[1]. »

Dans les polymères, la déformation irréversible est due à un glissement des chaînes polymères les unes par rapport aux autres. On est plus dans le domaine de la viscosité que dans celui de la plasticité ; selon le comportement du polymère, on parle de viscoélasticité ou de viscoplasticité.

.

Dans tous les cas, la déformation plastique résulte de mouvements au sein de la matière. Ces mouvements s'accompagnent de frottements (force de Peierls-Nabarro dans le cas des dislocations), et produisent donc de la chaleur. L'échauffement est en général négligeable, mais il peut être nécessaire de le prendre en compte si la déformation est rapide (adiabatique, la chaleur n'a pas le temps de s'évacuer et provoque une élévation notable de la température de la pièce).

Paramètres influençant la plasticité modifier

En général, les polymères ont la capacité de réorienter leurs chaînes à l’instar des autres matériaux (métaux, céramiques).

Leur comportement mécanique est donc très sensible à la température et à la vitesse de sollicitation, car ces paramètres influent sur la mobilité des chaînes. Ce sont ces deux paramètres principaux qui agissent par voie de conséquence sur la plasticité.

D’autre part, la structure des molécules joue également un rôle important sur les propriétés mécaniques. Par exemple, la longueur des chaînes et leurs enchevêtrements vont influer sur la mobilité moléculaire et donc sur la plasticité. Les conditions externes peuvent avoir aussi une influence sur le comportement mécanique.

La température modifier

La température est un paramètre essentiel sur le comportement mécanique. C’est ce paramètre qui est pris en compte pour le tracé des cartes de résistance mécanique. Une telle dépendance s’explique par le fait que la mobilité moléculaire augmente énormément avec la température. En revanche, la limite élastique diminue progressivement quand on augmente la température.

Ainsi, le comportement mécanique des polymères à basse température (T< 0,8 Tg) est un comportement rigide et fragile. En revanche, le comportement des polymères est souple et ductile à haute température (T> Tg). Cela se traduit par l’absence de striction, d’instabilité plastique et une déformation homogène sous contrainte faible.

Dans la zone de transition ductile/fragile (T~0,8 Tg), l’amorce de la plasticité est une cohabitation des deux modes. Pour le polycarbonate, cela se manifeste par une instabilité plastique sans striction.

La vitesse de sollicitation modifier

En ce qui concerne l’influence de la vitesse de sollicitation, l’évolution de comportement mécanique des polymères en vitesse de sollicitation est presque équivalente à l’évolution de comportement mécanique des polymères en température. Plus la vitesse de sollicitation est élevée, et plus les polymères sont rigides et fragiles. En revanche, ils sont souples et ductiles à vitesse de sollicitation lente.

La vitesse de sollicitation agit principalement sur la vitesse de déformation du polymère. Par conséquent au niveau des craquelures, plus la vitesse sera lente et plus les chaînes auront le temps de se réorienter au sein des craquelures pour créer des microcavités dans tout l’échantillon.

La pression hydrostatique modifier

Entre les unités constitutives d’un polymère, il existe un volume, appelé volume libre, sur lequel l’exercice d’une pression modifie considérablement les propriétés mécaniques, en l’occurrence la contrainte critique.

La structure moléculaire modifier

La nature et la structure d’un matériau polymère influent sur la plasticité. Par exemple, la longueur et la mobilité des chaînes, mais surtout les degrés d’enchevêtrement, de cristallinité et de réticulation agissent sur la faculté plus ou moins grande de pouvoir se déformer.

Également l’orientation moléculaire et la nature des renforts sont des paramètres influents. On peut prendre l’exemple d’un polymère ayant des groupements latéraux encombrants comme des groupes phényles et qui par conséquent aurait une mobilité plus faible qu’un polymère peu encombré. Ainsi, les cinétiques des phénomènes d’endommagement seraient différentes.

Les conditions de mise en œuvre interviennent également car la présence de défauts, de contraintes internes et l’état de surface créent une certaine plasticité supplémentaire.

L’environnement extérieur modifier

Un autre paramètre pouvant influencer la plasticité des polymères est l’environnement dans lequel il est utilisé. En effet, la teneur en eau du milieu ainsi que la présence d’agents chimiques peuvent agir sur la résistance et la rigidité du matériau. Par exemple, la résistance et la rigidité diminue lorsque la teneur en eau augmente pour les polyamides.

De même, si le polymère est en contact avec un gaz ou s’il est irradié par des rayons α, rayons β ou rayons γ (radioactivité) ; cela aura des conséquences sur l’endommagement du polymère et le conduira à la ruine.

Loi d’Eyring modifier

Tous les paramètres précédemment cités influent sur la plasticité des polymères. Ces paramètres entrent également en jeu dans la loi d’Eyring qui permet, comme les critères de plasticité, de décrire le comportement des polymères amorphes en déformation.

Cette approche de Ree-Eyring date de 1958 et a été développée par Duckett et Bauwens par la suite. Il s’agit essentiellement d’une loi phénoménologique traitant la déformation plastique comme un processus d’écoulement visqueux, activé à la fois par la température et le travail des contraintes. Ainsi, les caractéristiques moléculaires de la chaîne polymère ne sont pas seules responsables du processus de déformation.

Grâce à ce modèle, on est en mesure de calculer le seuil de plasticité en le reliant au temps de relaxation d’une portion de chaîne moléculaire ainsi qu’à la barrière d’énergie intermoléculaire.

On montre alors que :

(4.1)

La pression hydrostatique influence le temps de relaxation des chaînes, il convient donc d’en tenir compte dans le calcul. On montre ainsi que la vitesse de déformation devient :

(4.2)

D’après Bauwens-Crowet, on obtient pour le polycarbonate une série de droites parallèles pour diverses températures.

L'évolution linéaire de σy/T en fonction de log() confirme la loi de Eyring. Cependant, des mesures similaires sur le PMMA (ou le PVC) montrent l’obtention de courbes et non de droites.

Cette différence peut s’expliquer par l’existence de transitions secondaires omis dans les hypothèses de la théorie de Eyring. Cela revient à ne pas considérer le travail de la contrainte appliquée sur les groupements latéraux, ce qui est possible avec le PC qui possède des groupements latéraux relativement petits.


Notes et références modifier

  1. Alan Cottrell, An Introduction to Metallurgy, Cambridge, The Institute of Metals, , 548 p. (ISBN 0-901716-93-6), « 21. Mechanical properties », p. 393.

Voir aussi modifier

Articles connexes modifier

Bibliographie modifier

  • C. G’Sell, J-M. Haudin, Introduction à la mécanique des polymères, p. 321-337 et 395-402, (1995).
  • C. Oudet, Polymères Structure et Propriétés, Introduction, Masson, p. 123-142, (1994).
  • (en) E. Miller, Introduction to Plastics and Composites - Mechanical Properties and Engineering Applications, Marcel Dekker, p. 192-214, (1996) (ISBN 0-8247-9663-2).
  • M. Fontanille, Y. Gnanou, Chimie et physico-chimie des polymères, Dunod, p. 426-427, (2002).
  • G. Ehrenstein, F. Montagne, Matériaux polymères - structure propriétés et applications, Hermes Science Publishing, p. 133-147, (2000).
  • H-H. Kausch, N. Heymans, C.J. Plummer, P. Decroly, Matériaux polymères : propriétés mécaniques et physiques, Traité des matériaux, tome 14, Presses Polytechniques et Universitaires Romandes, p. 275-388, (2001).
  • (en) H-H. Kausch, Intrinsic Molecular Mobility and Toughness of Polymers, Springer Verlag, p. 1-35, (2005).
  • (en) I.M. Ward, J. Sweeney, An introduction of the mechanical properties of solid polymers, second edition, John Wiley & Sons, p. 238-239 et 281-295, (1984).
  • C. Oudet, Polymères, Structure et propriétés - Introduction, p. 132-142, (1994).
  • P. Combette, I. Ernoutt, Physique des polymères, tome II, Propriétés mécaniques, Hermann, Ch XI, p. 337-384, (2005).

Liens externes modifier