Higher Taxa in Extant Reptiles



References:

Overall taxonomy originally after

   Zug,G.R.; Vitt, L.J. & Caldwell, J.P. (2001)
   Herpetology, 2nd ed.
   Academic Press San Diego, London, [...]XIV + 630 pp.

Turtles mainly after

   Fujita, M.K.; Tag N. Engstrom, David E. Starkey and H. Bradley Shaffer (2004)
   Turtle phylogeny: insights from a novel nuclear intron.
   Molecular Phylogenetics and Evolution 31 (3): 1031-1040
   For a more recent analysis see
   Krenz, James G.; Gavin J.P. Naylor; H. Bradley Shaffer and Fredric J. Janzen (2005) Molecular phylogenetics and evolution of turtles.
   Molecular Phylogenetics and Evolution, Volume 37 (1):178-191

Squamata after multiple sources including

   Gamble, T.; A. M. Bauer, e. Greenbaum & T. R. Jackman (2008)
   Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zoologica Scripta 37 (4): 355–366
   Harris, D. J., Marshall, J.C. & Crandall, K.A. (2001)
   Squamate relationships based on C-mos nuclear DNA sequences: increased taxon sampling improves bootstrap support.
   Amphibia-Reptilia 22 (2): 235-242
   Kumazawa, Y. (2007)
   Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations.
   Gene 388: 19-26
   Townsend, T. M., A. Larson, E. Louis, J. R. Macey. 2004. Molecular phylogentics of Squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53(5):1-23.
   Vidal, Nicolas and S. Blair Hedges (2005)
   The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.
   Comptes Rendus Biologies 328 (10-11): 1000-1008
   Douglas et al. (2006) found that snakes formed a sister clade to amphisbaenians which is rejected by Vidal et al. (2005).
       Douglas, D.A.; Janke, A. & Arnason, U. (2006)
       A mitogenomic study on the phylogenetic position of snakes.
       Zoologica Scripta, 35: 545–558

Iguania after

   Frost, D.R.; Etheridge, R.; Janies, D. & Titus, T.A. (2001)
   Total evidence, sequence alignment, evolution of Polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania).
   American Museum Novitates 3343: 38 pp.

    

Snakes mainly after

   Pyron, R.A., et al. (2010) The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol. Phylogenet. Evol. (2010), doi:10.1016/j.ympev.2010.11.006
   Lee, Michael S. Y.; Andrew F. Hugall, Robin Lawson & John D. Scanlon (2007)
   Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood, Bayesian and parsimony analyses.
   Systematics and Biodiversity 5 (4): 371–389
   Vidal, N., Delmas, A.S., David, P., Cruaud, C., Couloux, A., Hedges, S.B. (2007). The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. Comptes Rendus Biologies 330: 182-187
   Vidal et al. (2007) The higher-level relationships of alethinophidian snakes inferred from seven nuclear and mitochondrial genes. In: Henderson, R.W., Powell, R., (eds). Biology of the Boas and Pythons, Eagle Mountain Publ., Eagle Montain, Utah. Pp. 27-33.

Note 1: Scincomorpha, Diploglossa, Platynota are not monophyletic groups. According to Harris et al. the Cordylidae, Gerrhosauridae, Scincidae, and Xantusiidae form a clade whereas the Lacertidae and Teiidae from independent clades. Vidal & Hedges (2009) recognize Diploglossidae as a family.

   Vidal, N. & Hedges, S.B. (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies, 332: 129–139; doi:10.1016/j.crvi.2008.07.010

However, a morphological analysis of the vaginal-cloacal region still yields a different topology, e.g. with the Dibamidae, Xantusiidae, and Amphisbaenia forming one branch:

   Sánchez-Martínez, Paola María; Martha Patricia Ramírez-Pinilla and Daniel Rafael Miranda-Esquivel (2007)
   Comparative histology of the vaginal–cloacal region in Squamata and its phylogenetic implications.
   Acta Zoologica (Stockholm) 88: 289–307

Note 2: Vidal et al. (2005, 2007) and other authors suggested various conflicting trees of different topology. While some trees revealed some interesting relationships, such as the Anguidae forming a clade with the Helodermatidae and Varanidae (forming the Anguimorpha), they often lacked certain families (such as the Anniellidae, Xenosauridae etc.).

Note 3: Kelly et al. (2009) split the superfamily Elapoidea into 5 families: Atractaspididae (including Atractaspidinae and Aparallactinae), Lamprophiidae, Prosymnidae, Psammophiidae, Pseudaspididae, Pseudoxyrhophiidae (including Pseudoxyrhophiinae and Amplorhininae). While we follow Pyron et al. (2010) here, you can find Kelly's largely equivalent groups (e.g. their Atractaspididae) in the database (as Atractaspidinae etc).

   Kelly, Christopher M. R.; Nigel P. Barker, Martin H. Villet and Donald G. Broadley 2009
   PHYLOGENY, BIOGEOGRAPHY AND CLASSIFICATION OF THE SNAKE SUPERFAMILY ELAPOIDEA: A RAPID RADIATION IN THE LATE EOCENE.
   Cladistics 25: 38-63

For further taxonomic references on higher taxa see family pages or follow links to phylogeny pages.