Processus de naissance et de mort

Les processus de naissance et de mort sont des cas particuliers de processus de Markov en temps continu où les transitions d'état sont de deux types seulement : les «naissances» où l'état passe de n à n+1 et les morts où l'état passe de n à n-1.

Ces processus ont de nombreuses applications en dynamique des populations et dans la théorie des files d'attente. Le processus est spécifié par les taux de naissance et les taux de mortalité .

Conditions de récurrence et de fugacité modifier

Les conditions de la récurrence et de la fugacité ont été établies par Samuel Karlin and James McGregor[1].

Un processus de naissance et de mort est récurrent si et seulement si
Un processus de naissance et de mort est ergodique si et seulement si
Un processus de naissance et de mort est null-récurrent si et seulement si

Les conditions de récurrence, de fugacité, d’ergodicité et de récurrence nulle peuvent être dérivées sous une forme plus explicite[2].

Pour les entiers , laisser désignent le ème itération du logarithme népérien, c’est-à-dire , et pour tout , .

Ensuite, les conditions de récurrence et de fugacité d’un processus de naissance et de mort sont les suivants.

Le processus de naissance et de mort est transitoire s’il existe , et , de telle sorte que, pour tous

,

où la somme vide de est supposé être égal à 0.

Le processus de naissance et de mort est récurrent s’il existe et , de telle sorte que, pour tous

,

Des classes plus larges de processus de naissance et de mort, pour lesquels les conditions de récurrence et de fugacité peuvent être établies, peuvent être trouvées dans [3]

Application modifier

Considérez la marche aléatoire unidimensionnelle , , qui se définit comme suit. Laisser et , , où prend des valeurs , et la distribution des est défini par les conditions suivantes:

satisfont à la condition , .

La marche aléatoire décrite ici est un analogue temporel discret du processus de naissance et de mort (voir chaîne de Markov) avec les taux de natalité
et taux de mortalité

Ainsi, la récurrence ou la fugacité de la marche aléatoire est associée à la récurrence ou à la fugacité du processus de naissance et de mort[2].

La marche aléatoire est transitoire s’il y en a , et de telle sorte que pour tous les
où la somme vide de est supposé être nul.
La marche aléatoire est récurrente s’il existe et de telle sorte que pour tous les

Le générateur modifier

On suppose que . Si est la probabilité de trouver le système dans l'état (avec ) à l'instant , alors

Autrement dit,

est le générateur défini par

Si plus généralement on note la probabilité d'être dans l'état à l'instant sachant que le système était dans l'état à l'instant , alors et (la matrice identité).


Exemples modifier

Le processus de Yule correspond à et .

Le processus linéaire de naissance et de mort correspond à et .

La file M/M/1 correspond à pour et pour .

Propriétés modifier

Supposons que pour tout . Le processus de naissance et de mort a une durée de vie infinie si et seulement si

est infini.

Par exemple, le processus de Yule a une durée de vie infinie car la série harmonique diverge.

Formule de Karlin et McGregor modifier

On définit une suite de polynômes telle que et . Autrement dit,

et

pour tout . Ces polynômes sont orthogonaux par rapport à une mesure de probabilité sur l'intervalle et

Cette formule est due à Karlin et McGregor.

Exemples modifier

  • Si et pour tout (file d'attente M/M/), alors où les sont les polynômes de Charlier. Les polynômes sont orthogonaux par rapport à la distribution de Poisson qui attribue le poids sur les entiers
  • Si et avec , alors il faut distinguer trois cas.

1er cas : Si , alors

où les sont les polynômes de Meixner. Ainsi, les polynômes sont orthogonaux par rapport à la distribution de probabilités qui attribue le poids

aux points pour

2e cas : Si , alors

Les polynômes sont orthogonaux par rapport à la distribution de probabilités qui attribue le poids

aux points pour

3e cas : Si , alors

où les sont des polynômes de Laguerre généralisés. Les polynômes sont orthogonaux par rapport à la distribution de probabilités sur de densité donnée par la distribution Gamma  :

Processus absorbants modifier

Lorsque , l'état 0 est absorbant. Ce cas intervient souvent en dynamique des populations et correspond à l'extinction de la population. Notons la probabilité que le système soit absorbé en 0 au bout d'un temps fini, si l'on part de l'état . Posons

Si , alors pour tout .

Si , alors

Par exemple, pour le processus linéaire de naissance et de mort, on voit que . L'extinction est certaine lorsque .

Supposons . Notons l'espérance du temps d'extinction lorsque le système part de l'état . Alors

et

pour .

Par exemple, pour le processus linéaire de naissance et de mort avec , on trouve que

Lorsque , on a

Méthode des fonctions génératrices modifier

Lorsque les taux de naissance et de mort sont des polynômes en , on peut faire le lien avec certaines équations aux dérivées partielles. Ainsi, pour le processus linéaire de naissance et de mort, posons

On montre que

En utilisant la méthode des caractéristiques, on en déduit que

si l'on part de l'état à . On en déduit que l'espérance de la population au temps est

On en déduit aussi la probabilité d'extinction au temps  :

si . En particulier, si , on a quand .

Quasi-processus de naissance et de mort modifier

Les quasi-processus de naissance et de mort sont les processus de Markov en temps continu sur un espace d'états discret dont le générateur est tridiagonal par blocs :

Références modifier

  1. Karlin, Samuel et McGregor, James, « The classification of birth and death processes », Transactions of the American Mathematical Society, vol. 86, no 2,‎ , p. 366–400 (DOI 10.1090/S0002-9947-1957-0094854-8, lire en ligne)
  2. a et b Vyacheslav M. Abramov, « Extension of the Bertrand–De Morgan test and its application », The American Mathematical Monthly, vol. 127, no 5,‎ , p. 444–448 (DOI 10.1080/00029890.2020.1722551, arXiv 1901.05843, S2CID 199552015, lire en ligne)
  3. Vyacheslav M. Abramov, « Necessary and sufficient conditions for the convergence of positive series », Journal of Classical Analysis, vol. 19, no 2,‎ , p. 117–125 (DOI 10.7153/jca-2022-19-09, arXiv 2104.01702, S2CID 233025219, lire en ligne)

Articles connexes modifier

Bibliographie modifier