Utilisateur:Dragonfly ORS/Brouillon

ORS (Company)

modifier

Object Research Systems (ORS) Inc. is a private Canadian company that designs and develops advanced 3D visualization and analysis software. Based in Montreal, Canada, ORS was founded in 2004 by Eric Fournier, Nicolas Piché, Normand Mongeau, and Thierry Côté.


.
CONTENTS
Products
Software applications
Outreach and partnership
See also
Other links and publications about ORS


PRODUCTS

modifier

ORS’ core brands include two software products; Dragonfly (released in 2016) and ORS Visual (released in 2006). Dragonfly aims to extract value from imaging systems and help solve complex industrial and scientific research problems, while ORS Visual responds to medical imaging challenges in clinical settings. With an open architecture and free for non-commercial users, researchers and third-party developers can extend the functionality of Dragonfly by developing niche products for specialized end-users.







SOFTWARE APPLICATIONS

modifier

Dragonfly

modifier
Scientific research and Industrial application
modifier

Designed for researchers and engineers in the fields of material[1] [2][3][4]and life sciences[5][6][7], Dragonfly provides qualitative and quantitative data for material characterization[1], surface analysis, process evaluation[2], quality control testing [1][3] or any analysis function[8][9] that requires a high-degree of accuracy. With the ability to handle the large datasets typically produced by SEM (Scanning Electron Microscopy)[1][2][3][8], SIM (Structured illumination microscopy)[6], FIB-SEM (Focus Ion Beam)[6][3], TEM (Transmission Electron Microscopy)[6], micro-CT (micro computed tomography)[7][9][4], light confocal[5] and other imaging systems. Through segmentation routines, hyper-spectral functions, and deep learning capabilities, Dragonfly's software architecture allows for extensible workflows and sophisticated 2D, 3D, 4D, nD visualizations and robust analyses.



ORS Visual

modifier
ORS Visual Desktop Display
Medical application
modifier


By combining an intuitive multilingual interface modeled on the radiological workflow with advanced 3D visualization capabilities, ORS Visual provides rapid, multi-user access to medical image data acquired by computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and other devices. With add-on modules such as Vessel Analysis[10][11], which enables the identification and evaluation of pathology related to vascular disease, and Autoplaque [12][13], which facilitates the characterization and quantification of plaque in coronary arteries, ORS Visual provides tools to address complex clinical challenges and allows healthcare specialists to improve patient care. ORS Visual has FDA clearance[14] and Health Canada approval [15].




OUTREACH AND PARTNERSHIP

modifier
Dragonfly Bone Analysis

The company's development team [16] includes experts from the areas of life and material sciences, computational modeling, 3D imaging, and mathematical analysis. Product developers operate in compliance with ISO and IEC standards [17][18] in order to ensure quality and processes that are repeatable and reproducible, and the company's software products are deployed by registered users in more than 80 countries. ORS shares partnerships with many prestigious institutions, such as Stanford, ZEISS, NASA, Yale, McGill, Waterloo, Cedars-Sinai Medical Center [13] and the Smithsonian Institute.





SEE ALSO

modifier
dragonfly-engine-part

ORS website: https://theobjects.com/index.html
ORS Dragonfly: https://theobjects.com/dragonfly/index.html
ORS Visual:https://theobjects.com/orsvisual/index.html
Dragonfly showcase: https://theobjects.com/dragonfly/showcase.html
OpenPNM: http://openpnm.org/
McGill University/ Jackie Vogel Lab: http://aguada.biol.mcgill.ca/
McGill University, The Integrated Quantitative Biology Initiative (IQBI): http://biology.mcgill.ca/QBI/
Cedars-Sinai Medical Center https://www.cedars-sinai.org/
ZEISS-Dragonfly pro:https://www.zeiss.fr/microscopie/produits/microscopie-a-rayons-x/zeiss-xradia-410-versa.html#logiciel


modifier
Desktop screencap of a Dragonfly Segmentation Trainer dialog and the classification results
  • Self-healing of electrical damage in polymers using superparamagnetic nanoparticles
    Yang Yang, Jinliang He, Qi Li, Lei Gao, Jun Hu, Rong Zeng, Jian Qin, Shan X. Wang & Qing Wang [19]
  • Binder jetting additive manufacturing of water-atomized iron
    I. Rishmawi, M. Salarian, and M. Vlasea. Department of Mechanical and Mechatronics Engineering, University of Waterloo, ON, Canada[20]
  • 3D Characterization of Iron Ore Pellets by X-rayMicroCT
    K. S. Augusto, H. Alves, M.H.P. Mauricio & S. Paciornik[21]
  • 3D Reconstruction of Porous and Poorly Conductive Soft Materials using FIB-SEM Tomography Cecilia Fager[22]
  • A 3-d ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility
    Marie-ange Janvier, Samir Merouche, Louise Allard, G.Soulez, and Guy Cloutier [23]
  • Automated peroperative assessment of stents apposition from OCT pullbacks
    Dubuisson F, Péry E, Ouchchane L, Combaret N, Kauffmann C, Souteyrand G, Motreff P, Sarry L [24]
  • Carotid plaque assessment using non-invasive shear strain elastography
    Maarten H.G Heusinkveld, M-H Roy Cardinal, Y. Ju, Z. Qin, R. G.P. Lopata, G.Soulez and G. Cloutier [25]
  • Clinical validation of a software for quantitative follow-up of abdominal aortic aneurysm maximal diameter and growth by CT angiography
    Claude Kauffmann, An Tang, Alexandre Dugas, Éric Therasse, Vincent Oliva, Gilles Soulez[26]
  • Compression moulding of complex parts us​ing randomly-oriented Strands Thermoplastic Composites
    Dominic LeBlanc, Benoit Landry, Arthur Levy , Pascal Hubert, Steven Roy, Ali Yousefpour[27]
  • Automatic control of the malapposition of coronary stent by OCT
    F. Dubuisson , C. Kauffmann, P. Motreff , E. Péry, L. Sarry[28]
  • Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from Carnegie stage 14 to 23)
    Lhuaire M, Tonnelet R, Renard Y, Piardi T, Sommacale D, Duparc F, Braun M, Labrousse M[29]
  • Direct visualization and quantification of bone growth into porous titanium implants using micro-CT
    E. Baril, L. P. Lefebvre, S. A. Hacking[30]
  • Early Development and Orientation of the Acoustic Funnel Provides Insight into the Evolution of Sound Reception Pathways in Cetaceans
    Maya Yamato, Nicholas D. Pyenson[31]
  • Effect of Epicardial Fat on Electroanatomical Mapping and Epicardial Catheter Ablation
    Benoit Desjardins, MD, PHD, Fred Morady, MD, Frank Bogun, MD[32]
  • Finite element analysis of abdominal aortic aneurysms: geometrical and structural reconstruction with application of an anisotropic material model
    David Roy, Gerhard A. Holzapfel, Claude Kauffmann, Gilles Soulez[33]
  • Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG
    Julian Ng, Alyssa Browning, Lorenz Lechner, Masako Terada, Gillian Howard, and Gregory S. X. E. Jefferis[34]
  • Impact: Development of a Radiological Mummy Database
    Andrew John Nelson and Andrew David Wade[35]
  • Impact of contrast injection and stent-graft implantation on reproducibility of volume measurements in semiautomated segmentation of abdominal aortic aneurysm on computed tomography
    Florence Morin-Roy, Claude Kauffmann, An Tang, Sofiane Hadjadj, Olivier Thomas, Nicolas Piché, Stéphane Elkouri, Dan Yang Yang, Éric Therasse, Gilles Soulez[36]
  • In situ observation of phase separation and hierarchical microstructure of KxFe2‐ySe2 single crystals
    Yong Liu, Qingfeng Xing , Warren E. Straszheim, Jeff Marshman, Pal Pedersen and Thomas A. Lograsso[37]
  • In situ testing of composite materials using synchrotron X-ray microtomography
    Eonyeon Jo[38]
  • In Vivo OCT Coronary Imaging Augmented with Stent Reendothelialization Score
    Florian Dubuisson, Claude Kauffmann, Pascal Motreff and Laurent Sarry [39]
  • Increased pericardial fat accumulation is associated with increased intramyocardial lipid content and duration of highly active antiretroviral therapy exposure in patients infected with human immunodeficiency virus: a 3T cardiovascular magnetic resonance feasibility study
    Mariana Diaz-Zamudio, Damini Dey, Troy LaBounty, Michael Nelson, Zhaoyang Fan, Lidia S. Szczepaniak, Bill Pei-Chin Hsieh, Ronak Rajani, Daniel Berman, Debiao Li, Rohan Dharmakumar, W. David Hardy and Antonio Hernandez Conte [40]
  • Local Alendronic Acid Elution Increases Net Periimplant Bone Formation: A Micro-CT Analysis
    J. Dennis Bobyn, Rebecca Thompson, Letitia Lim, Jenny Ann Pura, Kristian Bobyn, Michael Tanzer[41]
  • Measurements and detection of abdominal aortic aneurysm growth: Accuracy and reproducibility of a segmentation software
    Claude Kauffmann, An Tang, Éric Therasse, Marie-France Giroux, Stephane Elkouri, Philippe Melanson, Bertrand Melanson, Vincent L. Oliva, Gilles Soulez. [42]
  • Mission (im)possible – mapping the brain becomes a reality
    Anna Lena Eberle, Olaf Selchow, Marlene Thaler, Dirk Zeidler and Robert Kirmse[43]]
  • Morphologic evaluation of ruptured and symptomatic abdominal aortic aneurysm by three-dimensional modeling
    An Tang, Claude Kauffmann, Sophie Tremblay-Paquet, Stéphane Elkouri, Oren Steinmetz, Florence Morin-Roy, Laurie Cloutier-Gill, and Gilles Soulez [44]
  • Patient-specific targeting guides compared with traditional instrumentation for glenoid component placement in shoulder arthroplasty: a multi-surgeon study in 70 arthritic cadaver specimens.
    Thomas W. Throckmorton, Lawrence V. Gulotta, Frank O. Bonnarens, Stephen A. Wright, MDd, Jeffrey L. Hartzell, William B. Rozzi, Jason M. Hurst, Simon P. Frostick, John W. Sperling[45]
  • Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy
    Höhn K, Fuchs J, Fröber A, Kirmse R, Glass B, Anders-Össwein M, Walther P, Kräusslich HG, Dietrich C.[46]
  • Quantification et recalage d’examens endovasculaires par OCT: Application au suivi longitudinal de la couverture néointimale et de la malapposition des stents coronair
    Dubuisson Florian[47]
  • Reliability of a New Method for Evaluating Femoral Stem Positioning After Total Hip Arthroplasty Based on Stereoradiographic 3D Reconstruction
    Benjamin Guenoun, Firass El Hajj, David Biau, Philippe Anract, Jean-Pierre Courpied[48]
  • Simulation de radiographies à partir d’images tomodensitométriques pour l’enseignement de l’anatomie radiographique en médecine vétérinaire.
    Patricia Mendoza[49]
  • Simultaneous assessment of liver volume and whole liver fat content: a step towards one-stop shop preoperative MRI protocol
    Gaspard d’Assignies, Claude Kauffmann, Yvan Boulanger, Marc Bilodeau, Valérie Vilgrain, Gilles Soulez & An Tang[50]
  • Study of Processing Conditions on the Forming of Ribbed Features Using Randomly-Oriented Strands Thermoplastic Composites
    Dominic LeBlanc, Benoit Landry , Arthur Levy, Pascal Hubert, McGill University; Erin Quinlan , Bell Helicopter Textron Canada; Steven Roy, Ali Yousefpour, National Research Council Canada[51]
  • The reliability of the anterior pelvic plane for computer navigated acetabular component placement during total hip arthroplasty: Prospective study with the EOS imaging system
    O. Barbier, W. Skalli, L. Mainard, D. Mainard, Computer Assisted Orthopedic Surgery–France (CAOS-France) [52]
  • To Walk About as They Pleaseth: An Exploratory Study of Limb Treatment and Positioning in Ancient Egyptian Mummies
    Hallie Tennant, The University of Western Ontario[53]
  • Validation of a novel technique for creating simulated radiographs using computed tomography datasets.
    Patricia Mendoza, Marc-André D’anjou, Éric N. Carmel, Éric Fournier, Wilfried Mai, Kate Alexander, Matthew D. Winter, Allison L. Zwingenberger, Donald E. Thrall, Christine Theoret[54]
  • Value of C-Arm Computed Tomography to Evaluate Stent Deployment During Femoro-Popliteal Revascularization
    Gerald Gahide, Sofiane Hadjadj, Eric Therasse, Claude Kauffmann, Patrick Gilbert, Vincent L. Oliva, Jean-Claude Tardif, Jacques Lespérance, Guy Cloutier, Gilles Soulez.[55]


End Notes

  1. a b c et d 3D investigation of the microstructural modification in hypereutectic aluminum silicon (Al-30Si) alloy
    A. Gourav Rao, V. P. Deshmukh, Leah L. Lavery, Hrishikesh Bale[1]
  2. a b et c Laser Powder Bed Fusion of Water-Atomized Iron-Based Powders: Process Optimization
    M.Letenneur, V.Brailovski, A.Kreitcberg, V.Paserin and Ian Bailon-Poujol [2]
  3. a b c et d Steps Toward Automated Deprocessing of Integrated Circuits
    E.L. Principe, Navid Asadizanjani , Domenic Forte, Mark Tehranipoor, Robert Chivas, Michael DiBattista, Scott Silverman, Mike Marsh, Nicolas Piche, John Mastovich[3]
  4. a et b Workflows For X-ray And Neutron Interferometry/Tomography As Applied To Additive Manufacturing
    Jumao Yuan[4]
  5. a et b Spatial cues and not spindle pole maturation drive the asymmetry of astral microtubules between new and preexisting spindle poles
    Jette Lengefeld, Eric Yen, Xiuzhen Chen, Allen Leary, Jackie Vogel, and Yves Barral[5]
  6. a b c et d Strontium release from Sr2+-loaded bone cements and dispersion in healthy and osteoporotic rat bone
    Rohnke M, Pfitzenreuter S, Mogwitz B, Henß A, Thomas J, Bieberstein D, Gemming T, Otto SK, Ray S, Schumacher, M, Gelinsky M, Alt V[6]
  7. a et b X-ray computed microtomography of Megachirella wachtleri
    TR. Simões, MW. Caldwell, M Tałanda, M Bernard, A Palci, O Vernygora, F Bernardini, L Mancini, RL. Nydam[7]
  8. a et b Femtosecond laser-induced porosity on poly(ethylene) surfaces—A crystallographic and rheological study
    Youssef Assaf, Mark Zhao and Anne-Marie Kietzig[8]
  9. MicroRNA‐138 Inhibits Osteogenic Differentiation and Mineralization of Human Dedifferentiated Chondrocytes by Regulating RhoC and the Actin Cytoskeleton H.Zheng,D.Ramnaraign,B-A. Anderson,E.Tycksen,R.Nunley,Audrey McAlinden[9]
  10. A Cellular Automaton for Ultra-Fast Watershed Transform on GPU.
    Kauffmann C, Piché N.[10]
  11. Clinical validation of semi-automated software for volumetric and dynamic contrast enhancement analysis of soft tissue venous malformations on Magnetic Resonance Imaging examination
    Caty, Kauffmann C, Dubois J, Mansour A, Giroux MF, Oliva V, Piché N, Therasse E, Soulez G.[11]
  12. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US
    Dey D, Schepis T, Marwan M, Slomka PJ, Berman DS, Achenbach S. Radiology. 2010 Nov 1;257(2):516–22.[12]
  13. a et b Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography
    Dey D, Cheng VY, Slomka PJ, Nakazato R, Ramesh A, Gurudevan S, et al. Journal of Cardiovascular Computed Tomography. 2009 Nov;3(6):372–82[13]
  14. FDA 510(k) Premarket Notification database[14]
  15. Canadian Medical Devices Active Licence Listing[15]
  16. ORS Team[16]
  17. ISO-MADSAP Registration Certificate[17]
  18. TAP MMS Certificate[18]