Utilisateur:Guillaume.Baffou/Brouillon

Cross-grating wavefront sensing

modifier

Working principle

modifier

Cross-grating wavefront sensing is an optical imaging technique capable of mapping both the intensity and the wavefront profile of a light beam. The technique, introduced  by Jérôme Primot in the 90s,[1] is based on the association of a regular camera with a two-dimensional grating (aka cross-grating), separated by a millimetric distance. The most common configuration uses a cross-grating consisting of a 0-π chessboard phase pattern (Figure 1).[2] In this case, the technique is usually named quadriwave lateral shearing interferometry.[3] Such a grating geometry enables the propagation of a diffraction-less beam between the grating and the camera, similar to a simple shadow, despite the diffractive nature of the optical wave (Figure 2).[4][5] As a result, the registered image, called an interferogram, resembles the imaged obtained with a Shack-Hartmann wavefront sensor, albeit with a higher spot density, resulting in a higher spatial resolution. From this interferogram, the intensity and phase images are retrieved from a demodulation algorithm (Figure 3).[5]

Cross-grating phase microscopy

modifier

When implemented on the camera port of an optical microscope, thanks to its high spatial resolution, this cross-grating wavefront sensing can turn into a quantitative phase microscopy technique suited for bioimaging. Since 2009, this cross-grating phase microscopy (CGM) has been used for imaging living cells in culture,[3] measuring their dry mass,[6] birefringence[7] and highlighting organelles[8][9] in a label-free manner. More recently, CGM has been used also in nanophotonics as a metrology tool. In particular, it has been used to measure the optical properties of nanoparticles[10] and 2D-materials,[11] and to characterize metasurfaces[12] (Figure 4).

  1. (en) Jerome Primot, « Three-wave lateral shearing interferometer », Applied Optics, vol. 32, no 31,‎ , p. 6242 (ISSN 0003-6935 et 1539-4522, DOI 10.1364/AO.32.006242, lire en ligne, consulté le )
  2. (en) Jérôme Primot et Nicolas Guérineau, « Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard », Applied Optics, vol. 39, no 31,‎ , p. 5715 (ISSN 0003-6935 et 1539-4522, DOI 10.1364/AO.39.005715, lire en ligne, consulté le )
  3. a et b (en) Pierre Bon, Guillaume Maucort, Benoit Wattellier et Serge Monneret, « Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells », Optics Express, vol. 17, no 15,‎ , p. 13080 (ISSN 1094-4087, DOI 10.1364/OE.17.013080, lire en ligne, consulté le )
  4. (en) Jérôme Primot et Nicolas Guérineau, « Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard », Applied Optics, vol. 39, no 31,‎ , p. 5715 (ISSN 0003-6935 et 1539-4522, DOI 10.1364/AO.39.005715, lire en ligne, consulté le )
  5. a et b Guillaume Baffou, « Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description », Journal of Physics D: Applied Physics, vol. 54, no 29,‎ , p. 294002 (ISSN 0022-3727 et 1361-6463, DOI 10.1088/1361-6463/abfbf9, lire en ligne, consulté le )
  6. (en) Sherazade Aknoun, Julien Savatier, Pierre Bon et Frédéric Galland, « Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion », Journal of Biomedical Optics, vol. 20, no 12,‎ , p. 126009 (ISSN 1083-3668, DOI 10.1117/1.JBO.20.12.126009, lire en ligne, consulté le )
  7. Sherazade Aknoun, Pierre Bon, Julien Savatier et Benoit Wattellier, « Quantitative birefringence imaging of biological samples using quadri-wave interferometry », {{Article}} : paramètre « périodique » manquant,‎ , p. 85871D (DOI 10.1117/12.2003622, lire en ligne, consulté le )
  8. (en) Pierre Bon, Julien Savatier, Marine Merlin et Benoît Wattellier, « Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy », Journal of Biomedical Optics, vol. 17, no 7,‎ , p. 0760041 (ISSN 1083-3668, DOI 10.1117/1.JBO.17.7.076004, lire en ligne, consulté le )
  9. (en) Pierre Bon, Sandrine Lécart, Emmanuel Fort et Sandrine Lévêque-Fort, « Fast Label-Free Cytoskeletal Network Imaging in Living Mammalian Cells », Biophysical Journal, vol. 106, no 8,‎ , p. 1588–1595 (PMID 24739158, PMCID PMC4008798, DOI 10.1016/j.bpj.2014.02.023, lire en ligne, consulté le )
  10. (en) Samira Khadir, Samira Khadir, Daniel Andrén et Patrick C. Chaumet, « Full optical characterization of single nanoparticles using quantitative phase imaging », Optica, vol. 7, no 3,‎ , p. 243–248 (ISSN 2334-2536, DOI 10.1364/OPTICA.381729, lire en ligne, consulté le )
  11. (en) Samira Khadir, Pierre Bon, Dominique Vignaud et Elizabeth Galopin, « Optical Imaging and Characterization of Graphene and Other 2D Materials Using Quantitative Phase Microscopy », ACS Photonics, vol. 4, no 12,‎ , p. 3130–3139 (ISSN 2330-4022 et 2330-4022, DOI 10.1021/acsphotonics.7b00845, lire en ligne, consulté le )
  12. (en) Samira Khadir, Daniel Andrén, Ruggero Verre et Qinghua Song, « Metasurface Optical Characterization Using Quadriwave Lateral Shearing Interferometry », ACS Photonics, vol. 8, no 2,‎ , p. 603–613 (ISSN 2330-4022 et 2330-4022, DOI 10.1021/acsphotonics.0c01707, lire en ligne, consulté le )