Utilisateur:Miimb/Graphe rubané

Première définition intuitive

modifier

En première approche, on peut voir un graphe rubané comme une collections de polygones convexes finis et fermés, constitués d'arêtes orientées, collés les uns aux autres le long des arêtes orientées. Deux arêtes orientées recollées forment une arête, et l'ensemble des arêtes constituent un graphe non orienté, au sens de J.P Serre. [1]

Un tétraèdre
Tétraèdre : un graphe rubané à 4 sommets, 4 faces et 6 arêtes

Sans doute, un des exemples les plus connus est celui des cinq solides platoniciens, en précisant que nous nous intéressons ici au graphe formé par toutes les arêtes d'un solide.

D'autres définitions

modifier

La définition théorique

modifier

On considère un ensemble fini A avec un nombre pair d'éléments qui jouent le rôle des arêtes orientées.

Un graphe rubané est la donnée d'un quadruplet (A, p0, p1, p2) où p0, p1, p2 sont trois permutations de l'ensemble A avec les propriétés suivantes :

  • La permutation p1 est une involution sans point fixe : les orbites (au sens des actions de groupe ) sont des couples d'arêtes orientées qui jouent le rôle des arêtes géométriques.
  • La composition des trois permutations p0 ° p1 ° p2 vaut l'application identité.
  • La structure de graphe est fournie par la permutation p0 : l'extrémité d'une arête orientée a est l'orbite de a par p0

On peut bien entendu définir un graphe rubané avec seulement deux permutations au lieu de trois puisque la relation permet d'en exprimer une en fonction des autres.

Ainsi p2 = (p0 ° p1 )-1 et donc p2 = p1 ° p0-1.

Néanmoins, les trois permutations sont nécessaires pour bien appréhender cet objet mathématique qui se situe à la frontière de la dimension 1 et de la dimension 2.

Les orbites de p0 constituent par convention les sommets du graphe (arêtes orientées pointant vers le sommet). La longueur de l'orbite s'appelle le degré ou valence du sommet.

Les orbites de p2 constituent les faces du graphe rubané. La longueur de l'orbite s'appelle le degré ou valence de la face.

Observons que ces faces sont des lacets d'arêtes orientées et constituent donc des "polygones d'arêtes orientées".

...

Exemple 1 :

L'approche topologique

modifier
Un exemple de graphe rubané sur un tore
Un graphe rubané dessiné sur un tore

Un graphe dessiné sur une surface lisse compacte orientée admet naturellement une structure de graphe rubané. L'ordre des arêtes orientées pointant vers un sommet est fourni par l'orientation du plan tangent à la surface en ce sommet.

Les graphes rubanés ailleurs

modifier

Les graphes rubanés en physique

modifier

Les graphes rubanés se sont signalés dans une interprétation des diagrammes de Feynman qui ont donné lieu à de nombreux travaux mathématiques par des auteurs tels que M. Kontsevich ou encore E. Witten.

Les graphes rubanés en sciences naturelles

modifier

Les graphes rubanés en informatique

modifier

Catégorie:Mathématiques Catégorie:Mathématiques discrètes

  1. Jean Pierre Serre, Arbres, amalgames, SL2: cours au Collège de France, Société mathématique de France,, , 189 p. (ISBN 2-85629-007-8)